Displaying all 5 publications

Abstract:
Sort:
  1. Ng BW, Wong JS, Toh TH
    BMJ Case Rep, 2021 Dec 22;14(12).
    PMID: 34937752 DOI: 10.1136/bcr-2021-245154
    Pheochromocytomas are rare in children. The diagnosis is usually established from a raised urinary or plasma catecholamine or their metabolites. We present a girl aged 11 years who manifested with a hypertensive crisis secondary to an adrenal tumour but with unexpectedly normal urinary metanephrine and catecholamine results. She improved spontaneously following the crisis and underwent surgery later. The histopathological study confirmed a pheochromocytoma with large central necrosis. Her genetic screening reported a pathogenic von Hippel-Lindau gene mutation. Surveillance scan postsurgery detected no other tumours. Following the catecholamine crisis, an acute infarct occurred, resulting in extensive tumour necrosis and subsequent rapid remission of symptoms and paradoxically normal biochemical markers. Although not unheard of in adults, we believe this is the first reported case of an extensive spontaneous necrosis resulting in a biochemically normal pheochromocytoma in a child.
    Matched MeSH terms: Von Hippel-Lindau Tumor Suppressor Protein/genetics
  2. Abuhamad AY, Mohamad Zamberi NN, Vanharanta S, Mohd Yusuf SNH, Mohtar MA, Syafruddin SE
    Int J Mol Sci, 2023 Mar 29;24(7).
    PMID: 37047421 DOI: 10.3390/ijms24076447
    Clear cell renal cell carcinoma (ccRCC) is a hypervascular tumor that is characterized by bi-allelic inactivation of the VHL tumor suppressor gene and mTOR signalling pathway hyperactivation. The pro-angiogenic factor PDGFB, a transcriptional target of super enhancer-driven KLF6, can activate the mTORC1 signalling pathway in ccRCC. However, the detailed mechanisms of PDGFB-mediated mTORC1 activation in ccRCC have remained elusive. Here, we investigated whether ccRCC cells are able to secrete PDGFB into the extracellular milieu and stimulate mTORC1 signalling activity. We found that ccRCC cells secreted PDGFB extracellularly, and by utilizing KLF6- and PDGFB-engineered ccRCC cells, we showed that the level of PDGFB secretion was positively correlated with the expression of intracellular KLF6 and PDGFB. Moreover, the reintroduction of either KLF6 or PDGFB was able to sustain mTORC1 signalling activity in KLF6-targeted ccRCC cells. We further demonstrated that conditioned media of PDGFB-overexpressing ccRCC cells was able to re-activate mTORC1 activity in KLF6-targeted cells. In conclusion, cancer cell-derived PDGFB can mediate mTORC1 signalling pathway activation in ccRCC, further consolidating the link between the KLF6-PDGFB axis and the mTORC1 signalling pathway activity in ccRCC.
    Matched MeSH terms: Von Hippel-Lindau Tumor Suppressor Protein/genetics
  3. Abd-Aziz N, Stanbridge EJ, Shafee N
    J Gen Virol, 2016 Dec;97(12):3174-3182.
    PMID: 27902314 DOI: 10.1099/jgv.0.000623
    Newcastle disease virus (NDV) is a candidate agent for oncolytic virotherapy. Despite its potential, the exact mechanism of its oncolysis is still not known. Recently, we reported that NDV exhibited an increased oncolytic activity in hypoxic cancer cells. These types of cells negatively affect therapeutic outcome by overexpressing pro-survival genes under the control of the hypoxia-inducible factor (HIF). HIF-1 is a heterodimeric transcriptional factor consisting of a regulated α (HIF-1α) and a constitutive β subunit (HIF-1β). To investigate the effects of NDV infection on HIF-1α in cancer cells, the osteosarcoma (Saos-2), breast carcinoma (MCF-7), colon carcinoma (HCT116) and fibrosarcoma (HT1080) cell lines were used in the present study. Data obtained showed that a velogenic NDV infection diminished hypoxia-induced HIF-1α accumulation, leading to a decreased activation of its downstream target gene, carbonic anhydrase 9. This NDV-induced downregulation of HIF-1α occurred post-translationally and was partially abrogated by proteasomal inhibition. The process appeared to be independent of the tumour suppressor protein p53. These data revealed a correlation between NDV infection and HIF-1α downregulation, which highlights NDV as a promising agent to eliminate hypoxic cancer cells.
    Matched MeSH terms: Von Hippel-Lindau Tumor Suppressor Protein/genetics
  4. Ch'ng WC, Stanbridge EJ, Yusoff K, Shafee N
    J Interferon Cytokine Res, 2013 Jul;33(7):346-54.
    PMID: 23506478 DOI: 10.1089/jir.2012.0095
    Viral-mediated oncolysis is a promising cancer therapeutic approach offering an increased efficacy with less toxicity than the current therapies. The complexity of solid tumor microenvironments includes regions of hypoxia. In these regions, the transcription factor, hypoxia inducible factor (HIF), is active and regulates expression of many genes that contribute to aggressive malignancy, radio-, and chemo-resistance. To investigate the oncolytic efficacy of a highly virulent (velogenic) Newcastle disease virus (NDV) in the presence or absence of HIF-2α, renal cell carcinoma (RCC) cell lines with defective or reconstituted wild-type (wt) von Hippel-Lindau (VHL) activity were used. We show that these RCC cells responded to NDV by producing only interferon (IFN)-β, but not IFN-α, and are associated with increased STAT1 phosphorylation. Restoration of wt VHL expression enhanced NDV-induced IFN-β production, leading to prolonged STAT1 phosphorylation and increased cell death. Hypoxia augmented NDV oncolytic activity regardless of the cells' HIF-2α levels. These results highlight the potential of oncolytic NDV as a potent therapeutic agent in the killing of hypoxic cancer cells.
    Matched MeSH terms: Von Hippel-Lindau Tumor Suppressor Protein/genetics
  5. Ch'ng WC, Abd-Aziz N, Ong MH, Stanbridge EJ, Shafee N
    Cell Oncol (Dordr), 2015 Aug;38(4):279-88.
    PMID: 25930675 DOI: 10.1007/s13402-015-0229-5
    Newcastle disease virus (NDV) is an oncolytic virus that is known to have a higher preference to cancer cells than to normal cells. It has been proposed that this higher preference may be due to defects in the interferon (IFN) responses of cancer cells. The exact mechanism underlying this process, however, remains to be resolved. In the present study, we examined the antiviral response towards NDV infection of clear cell renal cell carcinoma (ccRCC) cells. ccRCC is associated with mutations of the von Hippel-Lindau tumor suppressor gene VHL, whose protein product is important for eliciting cellular responses to changes in oxygen levels. The most common first line treatment strategy of ccRCC includes IFN. Unfortunately, most ccRCC cases are diagnosed at a late stage and often are resistant to IFN-based therapies. Alternative treatment approaches, including virotherapy using oncolytic viruses, are currently being investigated. The present study was designed to investigate the mechanistic pathways underlying the response of ccRCC cells to oncolytic NDV infection.
    Matched MeSH terms: Von Hippel-Lindau Tumor Suppressor Protein/genetics
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links