Sweet orange Citrus sinensis peel is a phytobiotic agricultural waste with bioactive compounds that have potential functional properties as a growth promoter and immune stimulator. This study aims to evaluate the dietary effects of sweet orange peel (SOP) as a feed additive on growth enhancement of juvenile bagrid catfish Mystus nemurus and their disease resistance ability against Aeromonas hydrophila infection. Four experimental diets were formulated to contain 0 (SOP0, control), 4 (SOP4), 8 (SOP8) and 12 g/kg (SOP12) SOP. After 90 d of the feeding experiment, improvement in weight gain, specific growth rate, feed conversion ratio, and protein efficiency ratio were observed in the fish fed with SOP4. While fish survival was not significantly affected, hepatosomatic and viscerosomatic indices were significantly higher in fish fed with SOP12. Muscle protein was higher in fish fed with SOP4, SOP8, and SOP12 than in control but muscle lipids showed an opposite trend. A 14-d post-challenge test against A. hydrophila revealed no significant effect on the fish survival. Nevertheless, fish fed SOP4 encountered delayed bacterial infection compared to other treatments and fish fed with SOP0 and SOP4 performed numerically better survival. Infected fish showed skin depigmentation, haemorrhagic signs at the abdomen and anus, internal bleeding, and stomach and intestine enlargement. In conclusion, SOP4 could be recommended as a growth promoter while slightly delaying A. hydrophila infection in M. nemurus.
Skin plays an important role in the innate immune responses of fish, particularly towards bacterial infection. To understand the molecular mechanism of mucosal immunity of fish during bacterial challenge, a de novo transcriptome assembly of crucian carp Carassius auratus skin upon Aeromonas hydrophila infection was performed, the latter with Illumina Hiseq 2000 platform. A total of 118111 unigenes were generated and of these, 9693 and 8580 genes were differentially expressed at 6 and 12 h post-infection, respectively. The validity of the transcriptome results of eleven representative genes was verified by quantitative real-time PCR (qRT-PCR) analysis. A comparison with the transcriptome profiling of zebrafish skin to A. hydrophila with regards to the mucosal immune responses revealed similarities in the complement system, chemokines, heat shock proteins and the acute-phase response. GO and KEGG enrichment pathway analyses displayed the significant immune responses included TLR, MAPK, JAK-STAT, phagosome and three infection-related pathways (ie., Salmonella, Vibrio cholerae and pathogenic Escherichia coli) in skin. To our knowledge, this study is the first to describe the transcriptome analysis of C. auratus skin during A. hydrophila infection. The outcome of this study contributed to the understanding of the mucosal defense mechanisms in cyprinid species.
This study examined the effect of dietary prebiotics and probiotics after 16 weeks, followed by 8 weeks of post feeding trial with the control unsupplemented diet on haematological and immune response against Aeromonas hydrophila infection in Channa striata fingerlings. Fish were raised on a 40% protein and 12% lipid feed containing three commercial prebiotics (β-glucan, GOS or galacto-oligosaccharide, MOS or mannan-oligosaccharide); and two probiotics- (Saccharomyces cerevisiae, Lactobacillus acidophilus), respectively and a control. Throughout the study, supplementation with dietary prebiotics and probiotics led to significant (P hydrophila at the dose of 2 × 106. The disease resistance against A. hydrophila was higher significantly (P
Intensive aquaculture causes a decline in the health status of fish, resulting in an increased disease incidence. To counteract this, feed additives have been utilized to improve the growth performance and health of aquaculture species. This work specifically investigates the impact of powdered Ficus deltoidea (FD) on various parameters related to growth, blood parameters, liver and intestine morphology, body proximate analysis, digestive enzymes, antioxidant capacity, and disease resistance to motile Aeromonad Septicemia (MAS) caused by Aeromonas hydrophila infection in African catfish, Clarias gariepinus. Four formulated diets were prepared: T1 (0% FD), T2 (0.5% FD), T3 (0.75% FD), and T4 (1% FD). After 8 weeks, the African catfish's growth performance fed with the T2 diet exhibited a substantial improvement (p < 0.05), along with a remarkably lower (p < 0.05) feed conversion ratio (FCR) when compared to the other treatment groups. Blood parameter analysis revealed notably higher (p < 0.05) levels of white blood cell (WBC), lymphocytosis (LYM), hemoglobin (HGB), albumin (ALB), globulin (GLOB), as well as total protein (TP) in the T2 diet group. While all treatment groups displayed normal intestinal morphology, liver deterioration was observed in groups supplemented with higher FD. The T2 diet group recorded the highest villus length, width, and crypt depth. Protease and lipase levels were also notably improved in the T2 diet group compared to other treatment groups. Additionally, catalase (CAT), glutathione peroxidase (GPx), and superoxide dismutase (SOD) were remarkably elevated in all FD diet groups than in the control group. The expression of immune-related genes, including transforming growth factor beta 1, heat shock protein 90, nuclear factor kappa-B gene, and lysozyme G, was upregulated in all treatments. Overall, the results of this study indicate that incorporating dietary FD at 0.5% concentration in the diet of African catfish may enhance their productivity in intensive farming.
Two experiments were simultaneously conducted with Morus alba (white mulberry) foliage extract (MFE) as a growth promoter and treatment of Aeromonas hydrophila infection in separate 60 and 30 days trail (Experiments 1 and 2, resp.) in African catfish (Clarias gariepinus). In Experiment 1, four diets, control and control supplemented with 2, 5, or 7 g MFE/kg dry matter (DM) of diet, were used. In Experiment 2, fish were intraperitoneally infected with Aeromonas hydrophila and fed the same diets as experiment 1 plus additional two diets with or without antibiotic. Results of experiment 1 showed that growth was unaffected by dietary levels of MFE. Treatments with the inclusion of MFE at the levels of 5 and 7 g/Kg DM had no mortality. Red blood cells (RBC), albumin, and total protein were all higher for the treatments fed MFE (5 and 7 g/Kg DM). Results of experiment 2 showed RBC, hemoglobin, hematocrit, globulin, albumin, and total protein improved with the increase in MFE in the infected fish. The dietary MFE at the level of 7 g/kg DM reduced mortality rate. In conclusion, MFE at the level of 7 g/kg DM could be a valuable dietary supplement to cure the infected fish.
Aqueous and methanol extracts of lemon Citrus limon peel, Euphorbia hirta (aerial parts), and fenugreek Trigonella foenum-graecum seeds were tested for their in vitro antimicrobial activities against the bacterium Aeromonas hydrophila. A swab paper disk method showed that the methanol extract of E. hirta (EHE) had the largest inhibition zone and the lowest minimal inhibitory concentration compared to all other herbal extracts. Based on these results, EHE was included in the diets of Sharptooth Catfish Clarias gariepinus at 0 (control), 2, 5, or 7 g/kg of diet (experiment 1). Each treatment was conducted in triplicate, with 30 fish (mean weight ± SE = 9.4 ± 0.4 g) in each replicate. After 30 d, the growth, feed intake, hepatosomatic index (HSI), and plasma biochemical parameters were measured. With a separate batch of Sharptooth Catfish, the efficacy of the EHE diets in conferring fish resistance to A. hydrophila over 30 d was compared to that of a diet containing oxytetracycline (OTC; experiment 2). Six treatments were conducted in triplicate groups of 30 fish (mean weight ± SE = 9.0 ± 0.3 g); the Control fish were fed the control diet and were not injected with A. hydrophila, while the Control-AH and OTC-AH groups were infected with A. hydrophila and were fed either the control diet or the diet containing OTC at 1 g/199 g. The other three treatments included fish that were injected with A. hydrophila but fed diets with increasing EHE at 2, 5, or 7 g/kg. Experiment 1 showed no change to growth, feeding efficiency, HSI, or plasma biochemical parameters. In experiment 2, however, fish that were fed dietary EHE at 5 g/kg had significantly lower mortality than the Control-AH group, with further resistance observed for fish fed EHE at 7 g/kg. Dietary OTC was more effective than EHE as a prophylactic to A. hydrophila infection in Sharptooth Catfish. Nevertheless, EHE can potentially be a valuable dietary supplement to improve the resistance of Sharptooth Catfish to A. hydrophila infection. Received May 3, 2017; accepted August 24, 2017.
To evaluate a live recombinant Lactococcus lactis vaccine expressing aerolysin genes D1 (Lac-D1ae) and/or D4 (Lac-D4ae) in protection against Aeromonas hydrophila in tilapia (Oreochromis niloticus).
Mannose-binding lectin (MBL), an antimicrobial protein, is an important component of innate immune system which recognizes repetitive sugar groups on the surface of bacteria and viruses leading to activation of the complement system. In this study, we reported a complete molecular characterization of cDNA encoded for MBL from freshwater prawn Macrobrachium rosenbergii (Mr). Two short peptides (MrMBL-N20: (20)AWNTYDYMKREHSLVKPYQG(39) and MrMBL-C16: (307)GGLFYVKHKEQQRKRF(322)) were synthesized from the MrMBL polypeptide. The purity of the MrMBL-N20 (89%) and MrMBL-C16 (93%) peptides were confirmed by MS analysis (MALDI-ToF). The purified peptides were used for further antimicrobial characterization including minimum inhibitory concentration (MIC) assay, kinetics of bactericidal efficiency and analysis of hemolytic capacity. The peptides exhibited antimicrobial activity towards all the Gram-negative bacteria taken for analysis, whereas they showed the activity towards only a few selected Gram-positive bacteria. MrMBL-C16 peptides produced the highest inhibition towards both the Gram-negative and Gram-positive bacteria compared to the MrMBL-N20. Both peptides do not produce any inhibition against Bacillus sps. The kinetics of bactericidal efficiency showed that the peptides drastically reduced the number of surviving bacterial colonies after 24 h incubation. The results of hemolytic activity showed that both peptides produced strong activity at higher concentration. However, MrMBL-C16 peptide produced the highest activity compared to the MrMBL-N20 peptide. Overall, the results indicated that the peptides can be used as bactericidal agents. The MrMBL protein sequence was characterized using various bioinformatics tools including phylogenetic analysis and structure prediction. We also reported the MrMBL gene expression pattern upon viral and bacterial infection in M. rosenbergii gills. It could be concluded that the prawn MBL may be one of the important molecule which is involved in antimicrobial mechanism. Moreover, MrMBL derived MrMBL-N20 and MrMBL-C16 peptides are important antimicrobial peptides for the recognition and eradication of viral and bacterial pathogens.