Displaying all 7 publications

Abstract:
Sort:
  1. Calingacion M, Laborte A, Nelson A, Resurreccion A, Concepcion JC, Daygon VD, et al.
    PLoS One, 2014;9(1):e85106.
    PMID: 24454799 DOI: 10.1371/journal.pone.0085106
    With the ever-increasing global demand for high quality rice in both local production regions and with Western consumers, we have a strong desire to understand better the importance of the different traits that make up the quality of the rice grain and obtain a full picture of rice quality demographics. Rice is by no means a 'one size fits all' crop. Regional preferences are not only striking, they drive the market and hence are of major economic importance in any rice breeding / improvement strategy. In this analysis, we have engaged local experts across the world to perform a full assessment of all the major rice quality trait characteristics and importantly, to determine how these are combined in the most preferred varieties for each of their regions. Physical as well as biochemical characteristics have been monitored and this has resulted in the identification of no less than 18 quality trait combinations. This complexity immediately reveals the extent of the specificity of consumer preference. Nevertheless, further assessment of these combinations at the variety level reveals that several groups still comprise varieties which consumers can readily identify as being different. This emphasises the shortcomings in the current tools we have available to assess rice quality and raises the issue of how we might correct for this in the future. Only with additional tools and research will we be able to define directed strategies for rice breeding which are able to combine important agronomic features with the demands of local consumers for specific quality attributes and hence, design new, improved crop varieties which will be awarded success in the global market.
    Matched MeSH terms: Amylose/metabolism
  2. Mar NN, Umemoto T, Ismail M, Abdullah SN, Maziah M
    J Sci Food Agric, 2013 Jan 15;93(1):110-7.
    PMID: 22821180 DOI: 10.1002/jsfa.5737
    Characterization of starch properties and functionality can apply breeding program selection for desirable traits such as eating, cooking and processing qualities to meet consumer preference. Low amylose content is generally preferred in Malaysia because of cohesive, tender and glossy cooked rice. Rice high in short-chain amylopectin has a lower transition temperature of starch gelatinization. In the continuing search for improved starch quality in rice cultivars a study was carried out with new mutant lines MR219-4 and MR219-9, derived from MR219.
    Matched MeSH terms: Amylose/metabolism
  3. Uthumporn U, Shariffa YN, Karim AA
    Appl Biochem Biotechnol, 2012 Mar;166(5):1167-82.
    PMID: 22203397 DOI: 10.1007/s12010-011-9502-x
    The effect of heat treatment below the gelatinization temperature on the susceptibility of corn, mung bean, sago, and potato starches towards granular starch hydrolysis (35°C) was investigated. Starches were hydrolyzed in granular state and after heat treatment (50°C for 30 min) by using granular starch hydrolyzing enzyme for 24 h. Hydrolyzed heat-treated starches showed a significant increase in the percentage of dextrose equivalent compared to native starches, respectively, with corn 53% to 56%, mung bean 36% to 47%, sago 15% to 26%, and potato 12% to 15%. Scanning electron microscopy micrographs showed the presence of more porous granules and surface erosion in heat-treated starch compared to native starch. X-ray analysis showed no changes but with sharper peaks for all the starches, suggested that hydrolysis occurred on the amorphous region. The amylose content and swelling power of heat-treated starches was markedly altered after hydrolysis. Evidently, this enzyme was able to hydrolyze granular starches and heat treatment before hydrolysis significantly increased the degree of hydrolysis.
    Matched MeSH terms: Amylose/metabolism
  4. Fasahat P, Rahman S, Ratnam W
    J Genet, 2014 Apr;93(1):279-92.
    PMID: 24840849
    Starch accumulates in plants as granules in chloroplasts of source organs such as leaves (transitory starch) or in amyloplasts of sink organs such as seeds, tubers and roots (storage starch). Starch is composed of two types of glucose polymers: the essentially linear polymer amylose and highly branched amylopectin. The amylose content of wheat and rice seeds is an important quality trait, affecting the nutritional and sensory quality of two of the world's most important crops. In this review, we focus on the relationship between amylose biosynthesis and the structure, physical behaviour and functionality of wheat and rice grains. We briefly describe the structure and composition of starch and then in more detail describe what is known about the mechanism of amylose synthesis and how the amount of amylose in starch might be controlled. This more specifically includes analysis of GBSS alleles, the relationship between waxy allelic forms and amylose, and related quantitative trait loci. Finally, different methods for increasing or lowering amylose content are evaluated.
    Matched MeSH terms: Amylose/metabolism*
  5. Abubakar B, Zawawi N, Omar AR, Ismail M
    PLoS One, 2017;12(7):e0181309.
    PMID: 28727791 DOI: 10.1371/journal.pone.0181309
    Type 2 diabetes is a metabolic disorder with established, well-defined precursors. Obesity and insulin resistance are amongst most important factors in predisposition to diabetes. Rice is a staple for about half the global population and its consumption has been strongly linked with diabetogenesis. We assert that tackling the prevalence of predisposing factors by modifying certain rice cultivars could reduce the global burden of obesity and insulin resistance, and by extension type 2 diabetes. Several rice cultivars with various properties were fed to nulliparous rats (five weeks old at the start of the experiment) for 90 days. They were then returned to a diet of standard pellets and mated with males raised on a standard diet. The resulting pups and dams were investigated for obesity and insulin resistance markers. We found that germination did more to reduce predisposition to obesity and insulin resistance than high amylose content. The combined reducing effect of germination and high amylose content on predisposition to obesity and insulin resistance was greater than the sum of their independent effects. Polished (white) rice with a low amylose content predisposed dams on a high-fat diet to markers of insulin resistance and obesity and this predisposition was inherited (in biochemical terms) by their F1 offspring. Overall, the results suggest that harnessing the beneficial properties of germination and amylose in rice would reduce the burden of obesity and insulin resistance, which are known to be key risk factors for development of type 2 diabetes.
    Matched MeSH terms: Amylose/metabolism*
  6. Cheng A, Ismail I, Osman M, Hashim H
    Int J Mol Sci, 2012;13(5):6156-66.
    PMID: 22754356 DOI: 10.3390/ijms13056156
    The polymorphisms of Waxy (Wx) microsatellite and G-T single-nucleotide polymorphism (SNP) in the Wx gene region were analyzed using simplified techniques in fifteen rice varieties. A rapid and reliable electrophoresis method, MetaPhor agarose gel electrophoresis (MAGE), was effectively employed as an alternative to polyacrylamide gel electrophoresis (PAGE) for separating Wx microsatellite alleles. The amplified products containing the Wx microsatellite ranged from 100 to 130 bp in length. Five Wx microsatellite alleles, namely (CT)(10), (CT)(11), (CT)(16), (CT)(17), and (CT)(18) were identified. Of these, (CT)(11) and (CT)(17) were the predominant classes among the tested varieties. All varieties with an apparent amylose content higher than 24% were associated with the shorter repeat alleles; (CT)(10) and (CT)(11), while varieties with 24% or less amylose were associated with the longer repeat alleles. All varieties with intermediate and high amylose content had the sequence AGGTATA at the 5'-leader intron splice site, while varieties with low amylose content had the sequence AGTTATA. The G-T polymorphism was further verified by the PCR-AccI cleaved amplified polymorphic sequence (CAPS) method, in which only genotypes containing the AGGTATA sequence were cleaved by AccI. Hence, varieties with desirable amylose levels can be developed rapidly using the Wx microsatellite and G-T SNP, along with MAGE.
    Matched MeSH terms: Amylose/metabolism*
  7. Amirul AA, Khoo SL, Nazalan MN, Razip MS, Azizan MN
    Folia Microbiol (Praha), 1996;41(2):165-74.
    PMID: 9138312
    A. niger produced alpha-glucosidase, alpha-amylase and two forms of glucoamylase when grown in a liquid medium containing raw tapioca starch as the carbon source. The glucoamylases, which formed the dominant components of amylolytic activity manifested by the organism, were purified to homogeneity by ammonium sulfate precipitation, ion-exchange and two cycles of gel filtration chromatography. The purified enzymes, designated GA1 and GA2, a raw starch digesting glucoamylase, were found to have molar masses of 74 and 96 kDa and isoelectric points of 3.8 and 3.95, respectively. The enzymes were found to have pH optimum of 4.2 and 4.5 for GA1 and GA2, respectively, and were both stable in a pH range of 3.5-9.0. Both enzymes were thermophilic in nature with temperature optimum of 60 and 65 degrees C, respectively, and were stable for 1 h at temperatures of up to 60 degrees C. The kinetic parameters Km and V showed that with both enzymes the branched substrates, starch and amylopectin, were more efficiently hydrolyzed compared to amylose. GA2, the more active of the two glucoamylases produced, was approximately six to thirteen times more active towards raw starches compared to GA1.
    Matched MeSH terms: Amylose/metabolism
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links