Displaying all 5 publications

Abstract:
Sort:
  1. Roslan AA, Tayyab S
    Biochem Mol Biol Educ, 2019 03;47(2):156-160.
    PMID: 30629781 DOI: 10.1002/bmb.21207
    A laboratory exercise on the interaction between the herbicide pendimethalin (PM) and goat serum albumin (GSA), a carrier protein present in mammalian blood circulation, is described. Fluorescence spectroscopy was used to study the binding reaction between PM and GSA. Titration of a constant amount of the protein (GSA) with increasing ligand (PM) concentrations produced a consecutive decrease in the protein's fluorescence. Treatment of the fluorescence quenching data according to the Stern-Volmer equation yielded the values of the Stern-Volmer constant (Ksv ) and bimolecular quenching rate constant (kq ), whereas values of the binding constant (Ka ) and number of binding sites (n) were obtained from the double logarithmic plot. This experiment provides an exciting opportunity for undergraduate students to independently perform ligand binding studies with a protein, in addition to providing the means for the determination of their binding parameters. © 2019 International Union of Biochemistry and Molecular Biology, 47(2): 156-160, 2019.
    Matched MeSH terms: Aniline Compounds/pharmacology
  2. Sivaranjan K, Padmaraj O, Santhanalakshmi J, Sathuvan M, Sathiyaseelan A, Sagadevan S
    Sci Rep, 2020 02 13;10(1):2586.
    PMID: 32054936 DOI: 10.1038/s41598-020-59491-5
    Exploring the new catalytic systems for the reduction of organic and inorganic pollutants from an indispensable process in chemical, petrochemical, pharmaceutical and food industries, etc. Hence, in the present work, authors motivated to synthesize bare reduced graphene oxide (rGO), polyaniline (PANI), three different ratios of rGO-PANI(80:20,50:50, 10:90) composites and rGO-PANI(80:20,50:50, 10:90) supported mono (Pd) & bimetallic [Pd: Au(1:1,1:2, 2:1)] nanocomposite by a facile chemical reduction method. Also, it investigated their catalytic performances for the reduction of organic/inorganic pollutants and antimicrobial activities. All the freshly prepared bare rGO, PANI, three different ratios of rGO-PANI(80:20, 50:50,10:90) composites and rGO-PANI(80:20, 50:50,10:90)/Pd & Pd: Au(1:1, 1:2,2:1) nanocomposite hybrid catalysts were characterized using UV-Vis, FT-IR, SEM, FE-SEM, EDAX, HR-TEM, XRD, XPS and Raman spectroscopy analysis. Among them, an optimized best composition of rGO-PANI(80:20)/Pd: Au(1:1) bimetallic nanocomposite hybrid catalyst exhibits better catalytic reduction and antimicrobial activities than other composites, as a result of strong electrostatic interactions between rGO, PANI and bimetal (Pd: Au) NPs through a synergistic effect. Hence, an optimized rGO-PANI(80:20)/Pd:Au(1:1) bimetallic nanocomposite catalyst would be considered as a suitable catalyst for the reduction of different nitroarenes, organic dyes, heavy metal ions and also significantly inhibit the growth of S. aureus, S. Typhi as well as Candida albicans and Candida kruesi in wastewater.
    Matched MeSH terms: Aniline Compounds/pharmacology
  3. Cho BC, Chewaskulyong B, Lee KH, Dechaphunkul A, Sriuranpong V, Imamura F, et al.
    J Thorac Oncol, 2019 01;14(1):99-106.
    PMID: 30240852 DOI: 10.1016/j.jtho.2018.09.004
    INTRODUCTION: Here we report efficacy and safety data of an Asian subset of the phase III FLAURA trial (NCT02296125), which compares osimertinib with standard of care (SoC) EGFR tyrosine kinase inhibitors (TKIs) in patients with previously untreated advanced NSCLC with tumors harboring exon 19 deletion (Ex19del)/L858R EGFR TKI-sensitizing mutations.

    METHODS: Eligible Asian patients (enrolled at Asian sites) who were at least 18 years of age (≥20 years in Japan) and had untreated EGFR-mutated advanced NSCLC were randomized 1:1 to receive osimertinib (80 mg, orally once daily) or an SoC EGFR TKI (gefitinib, 250 mg, or erlotinib, 150 mg, orally once daily). The primary end point was investigator-assessed progression-free survival (PFS). The key secondary end points were overall survival, objective response rate, central nervous system efficacy, and safety.

    RESULTS: The median PFS was 16.5 versus 11.0 months for the osimertinib and SoC EGFR TKI groups, respectively (hazard ratio = 0.54, 95% confidence interval: 0.41-0.72, p < 0.0001). The overall survival data were immature (24% maturity). The objective response rates were 80% for osimertinib and 75% for an SoC EGFR TKI. The median central nervous system PFS was not calculable for the osimertinib group and was 13.8 months for the SoC EGFR TKI group (hazard ratio = 0.55, 95% confidence interval: 0.25-1.17, p = 0.118). Fewer adverse events of grade 3 or higher (40% versus 48%) and fewer adverse events leading to treatment discontinuation (15% versus 21%) were reported with osimertinib versus with an SoC EGFR TKI, respectively.

    CONCLUSION: In this Asian population, first-line osimertinib demonstrated a clinically meaningful improvement in PFS over an SoC EGFR TKI, with a safety profile consistent with that for the overall FLAURA study population.

    Matched MeSH terms: Aniline Compounds/pharmacology
  4. Verusingam ND, Chen YC, Lin HF, Liu CY, Lee MC, Lu KH, et al.
    J Chin Med Assoc, 2021 03 01;84(3):248-254.
    PMID: 33009209 DOI: 10.1097/JCMA.0000000000000438
    BACKGROUND: Lung cancer contributes to high cancer mortality worldwide with 80% of total cases diagnosed as non-small cell lung cancer (NSCLC). Epidermal growth factor receptor (EGFR) tyrosine kinase (TK) domain serves as a druggable target in NSCLC patients with exon 19 deletion and L858R mutation. However, patients eventually succumbed to resistance to first- and second-generation EGFR-TK inhibitors through activation of T790M mutation. Third-generation EGFR-TKI, Osimertinib exhibits high efficacy in patients with exon 19 deletion/L858R/T790M mutation but they experienced acquired resistance thereafter. Available treatment options in NSCLC patients remains a challenge due to unknown molecular heterogeneity responsible for acquired resistance to EGFR-TKI. In this study, we aim to generate Osimertinib-resistant (OR) cells from H1975 carrying L858R/T790M double mutation which can be used as a model to elucidate mechanism of resistance.

    METHODS: OR cells were established via stepwise-dose escalation and limiting single-cell dilution method. We then evaluated Osimertinib resistance potential via cell viability assay. Proteins expression related to EGFR-signalling, epithelial to mesenchymal transition (EMT), and autophagy were analyzed via western blot.

    RESULTS: OR cell lines exhibited increased drug resistance potential compared to H1975. Distinguishable mesenchymal-like features were observed in OR cells. Protein expression analysis revealed EGFR-independent signaling involved in the derived OR cells as well as EMT and autophagy activity.

    CONCLUSION: We generated OR cell lines in-vitro as evidenced by increased drug resistance potential, increased mesenchymal features, and enhanced autophagy activity. Development of Osimertinib resistance cells may serve as in-vitro model facilitating discovery of molecular aberration present during acquired mechanism of resistance.

    Matched MeSH terms: Aniline Compounds/pharmacology*
  5. Lian BSX, Yek AEH, Shuvas H, Abdul Rahman SF, Muniandy K, Mohana-Kumaran N
    BMC Res Notes, 2018 Mar 27;11(1):197.
    PMID: 29580266 DOI: 10.1186/s13104-018-3302-0
    OBJECTIVE: There are number of studies which report that BCL-2 anti-apoptotic proteins (e.g. BCL-2, BCL-XL, and MCL-1) are highly expressed in cervical cancer tissues compared to the normal cervical epithelia. Despite these reports, targeting these proteins for cervical cancer treatment has not been explored extensively. BH3-mimetics that inhibit specific BCL-2 anti-apoptotic proteins may hold encouraging treatment outcomes for cervical cancer management. Hence, the aim of this pilot study is to investigate the sensitivity of cervical cancer cell lines to combination of two BH3-mimetics namely ABT-263 which selectively inhibits BCL-2, BCL-XL and BCL-w and A-1210477, a selective MCL-1 inhibitor.

    RESULTS: We report that combination of A-1210477 and ABT-263 exhibited synergistic effects on all cervical cancer cell lines tested. Drug sensitization studies revealed that A-1210477 sensitised the cervical cancer cell lines SiHa and CaSki to ABT-263 by 11- and fivefold, respectively. Sensitization also occurred in the opposite direction whereby ABT-263 sensitised SiHa and CaSki to A-1210477 by eightfold. This report shows that combination of ABT-263 and A-1210477 could be a potential treatment strategy for cervical cancer. Extensive drug mechanistic studies and drug sensitivity studies in physiological models are necessary to unleash the prospect of this combination for cervical cancer therapy.

    Matched MeSH terms: Aniline Compounds/pharmacology*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links