The morphology and 12 shell morphometric features proportionate to shell length were analysed between local hard clam; Meretrix lyrata, M. meretrix and M. lusoria from Sarawak, Malaysia. Meretrix spp. was observed to comprise a unique feature of a pallial sinus scar for each species. Analysis of variance revealed significant differences among Meretrix spp. using proportion ratios of SL for SW; LL; AL; LCT; AW; PW and PS (p<0.05). Cluster analysis among morphometric features of M. lyrata, M. meretrix and M. lusoria were discriminated at 98.5% similarities and supported by the principal component analysis. The present study suggests that pallial sinus scar shape, together with interior and exterior morphometric features, were suitable as identification keys for Meretrix spp. Hence, the present study emphasizes on the application of interior, rather than exterior morphology and morphometric features in hard clam identification before further investigation can be performed through genetic identification means.
The genus Cerithideopsis is most common in mangrove and salt marsh habitats of the New World tropics, but there is also a small radiation in the Indo-West Pacific region. Previously, these Indo-Pacific snails have generally been classified as Cerithidea largillierti (Philippi, 1848). Molecular phylogenetic analysis (partial sequences of mitochondrial COI and 16S rRNA, and nuclear 28S rRNA) of 15 specimens from 8 localities between Japan and Australia reveal three clades, among which there are small morphological differences and which show allopatric distributions. Cerithideopsis largillierti sensu stricto is restricted to Japan and China, while the two other species are described as new: C. australiensis occurs in tropical Australasia and C. malayensis is found from Malaysia to Java and the Philippines. All occur on mud and in pools with leaf litter, in the shaded landward and middle zones of mangrove forests, and do not climb the trees. The species accounts include full synonymies, detailed descriptions of shells based on 82 museum samples, descriptions of living animals, distribution records and maps, and notes on habitat and conservation status.
Invasive snails in the genus Pomacea have spread across Southeast Asia including Peninsular Malaysia. Their effects on natural and agricultural wetlands are appreciable, but species-specific effects are less clear because of morphological similarity among the species. Our objective was to establish diagnostic characteristics of Pomacea species in Malaysia using genetic and morphological criteria. The mitochondrial COI gene of 52 adult snails from eight localities in Peninsular Malaysia was amplified, sequenced, and analysed to verify species and phylogenetic relationships. Shells were compared using geometric morphometric and covariance analyses. Two monophyletic taxa, P. canaliculata and P. maculata, occurred in our samples. The mean ratio of shell height: aperture height (P = 0.042) and shell height: shell width (P = 0.007) was smaller in P. maculata. P. maculata co-occurred with P. canaliculata in five localities, but samples from three localities contained only P. canaliculata. This study is the first to confirm the presence of two of the most invasive species of Pomacea in Peninsular Malaysia using a molecular technique. P. canaliculata appears to be the more widespread species. Despite statistical differences, both quantitative and qualitative morphological characteristics demonstrated much interspecific overlap and intraspecific variability; thus, shell morphology alone cannot reliably verify species identity. Molecular techniques for distinguishing between these two highly invasive Pomacea species are needed to understand their specific ecological niches and to develop effective protocols for their management.
Quantitative analysis of organismal form is an important component for almost every branch of biology. Although generally considered an easily-measurable structure, the quantification of gastropod shell form is still a challenge because many shells lack homologous structures and have a spiral form that is difficult to capture with linear measurements. In view of this, we adopt the idea of theoretical modelling of shell form, in which the shell form is the product of aperture ontogeny profiles in terms of aperture growth trajectory that is quantified as curvature and torsion, and of aperture form that is represented by size and shape. We develop a workflow for the analysis of shell forms based on the aperture ontogeny profile, starting from the procedure of data preparation (retopologising the shell model), via data acquisition (calculation of aperture growth trajectory, aperture form and ontogeny axis), and data presentation (qualitative comparison between shell forms) and ending with data analysis (quantitative comparison between shell forms). We evaluate our methods on representative shells of the genera Opisthostoma and Plectostoma, which exhibit great variability in shell form. The outcome suggests that our method is a robust, reproducible, and versatile approach for the analysis of shell form. Finally, we propose several potential applications of our methods in functional morphology, theoretical modelling, taxonomy, and evolutionary biology.