Displaying all 12 publications

Abstract:
Sort:
  1. Chong KC, Thang LY, Quirino JP, See HH
    J Chromatogr A, 2017 Feb 17;1485:142-146.
    PMID: 28104238 DOI: 10.1016/j.chroma.2017.01.012
    A portable microchip electrophoresis (MCE) coupled with on-chip contactless conductivity detection (C(4)D) system was evaluated for the determination of vancomycin in human plasma. In order to enhance the detection sensitivity, a new online multi-stacking preconcentration technique based on field-enhanced sample injection (FESI) and micelle-to-solvent stacking (MSS) was developed and implemented in MCE-C(4)D system equipped with a commercially available double T-junction glass chip. The cationic analytes from the two sample reservoirs were injected under FESI conditions and subsequently focused by MSS within the sample-loading channel. The proposed multi-stacking strategy was verified under a fluorescence microscope using Rhodamine 6G as the model analyte and a sensitivity enhancement factor (SEF) of up to 217 was achieved. The developed approach was subsequently implemented in the aqueous-based MCE, coupled to C(4)D in order to monitor the targeted antibiotic (in this case, vancomycin) present in human plasma samples. The multi-stacking and analysis time for vancomycin were 50s and 250s respectively, with SEF of approximately 83 when compared to typical gated injection. The detection limit of the method for vancomycin was 1.2μg/mL, with intraday and interday repeatability RSDs of 2.6% and 4.3%, respectively. Recoveries in spiked human plasma were 99.0%-99.2%.
    Matched MeSH terms: Anti-Bacterial Agents/blood*
  2. Colin PJ, Allegaert K, Thomson AH, Touw DJ, Dolton M, de Hoog M, et al.
    Clin Pharmacokinet, 2019 06;58(6):767-780.
    PMID: 30656565 DOI: 10.1007/s40262-018-0727-5
    BACKGROUND AND OBJECTIVES: Uncertainty exists regarding the optimal dosing regimen for vancomycin in different patient populations, leading to a plethora of subgroup-specific pharmacokinetic models and derived dosing regimens. We aimed to investigate whether a single model for vancomycin could be developed based on a broad dataset covering the extremes of patient characteristics. Furthermore, as a benchmark for current dosing recommendations, we evaluated and optimised the expected vancomycin exposure throughout life and for specific patient subgroups.

    METHODS: A pooled population-pharmacokinetic model was built in NONMEM based on data from 14 different studies in different patient populations. Steady-state exposure was simulated and compared across patient subgroups for two US Food and Drug Administration/European Medicines Agency-approved drug labels and optimised doses were derived.

    RESULTS: The final model uses postmenstrual age, weight and serum creatinine as covariates. A 35-year-old, 70-kg patient with a serum creatinine level of 0.83 mg dL-1 (73.4 µmol L-1) has a V1, V2, CL and Q2 of 42.9 L, 41.7 L, 4.10 L h-1 and 3.22 L h-1. Clearance matures with age, reaching 50% of the maximal value (5.31 L h-1 70 kg-1) at 46.4 weeks postmenstrual age then declines with age to 50% at 61.6 years. Current dosing guidelines failed to achieve satisfactory steady-state exposure across patient subgroups. After optimisation, increased doses for the Food and Drug Administration label achieve consistent target attainment with minimal (± 20%) risk of under- and over-dosing across patient subgroups.

    CONCLUSIONS: A population model was developed that is useful for further development of age and kidney function-stratified dosing regimens of vancomycin and for individualisation of treatment through therapeutic drug monitoring and Bayesian forecasting.

    Matched MeSH terms: Anti-Bacterial Agents/blood
  3. Ooi MH, Ngu SJ, Chor YK, Li J, Landersdorfer CB, Nation RL
    Clin Infect Dis, 2019 11 13;69(11):1962-1968.
    PMID: 30722017 DOI: 10.1093/cid/ciz067
    BACKGROUND: Intravenous colistin is widely used to treat infections in pediatric patients. Unfortunately, there is a paucity of pharmacological information to guide the selection of dosage regimens. The daily dose recommended by the US Food and Drug Administration (FDA) and European Medicines Agency (EMA) is the same body weight-based dose traditionally used in adults. The aim was to increase our understanding of the patient factors that influence the plasma concentration of colistin, and assess the likely appropriateness of the FDA and EMA dosage recommendations.

    METHODS: There were 5 patients, with a median age of 1.75 (range 0.1-6.25) years, a median weight of 10.7 (2.9-21.5) kg, and a median creatinine clearance of 179 (44-384) mL/min/1.73m2, who received intravenous infusions of colistimethate each 8 hours. The median daily dose was 0.21 (0.20-0.21) million international units/kg, equivalent to 6.8 (6.5-6.9) mg of colistin base activity per kg/day. Plasma concentrations of colistimethate and formed colistin were subjected to population pharmacokinetic modeling to explore the patient factors influencing the concentration of colistin.

    RESULTS: The median, average, steady-state plasma concentration of colistin (Css,avg) was 0.88 mg/L; individual values ranged widely (0.41-3.50 mg/L), even though all patients received the same body weight-based daily dose. Although the daily doses were ~33% above the upper limit of the FDA- and EMA-recommended dose range, only 2 patients achieved Css,avg ≥2mg/L; the remaining 3 patients had Css,avg <1mg/L. The pharmacokinetic covariate analysis revealed that clearances of colistimethate and colistin were related to creatinine clearance.

    CONCLUSIONS: The FDA and EMA dosage recommendations may be suboptimal for many pediatric patients. Renal functioning is an important determinant of dosing in these patients.

    Matched MeSH terms: Anti-Bacterial Agents/blood
  4. Abdul-Aziz MH, Lipman J, Roberts JA
    Curr. Opin. Infect. Dis., 2017 Apr;30(2):231-239.
    PMID: 28030371 DOI: 10.1097/QCO.0000000000000348
    PURPOSE OF REVIEW: Nosocomial pneumonia caused by multidrug-resistant pathogens is increasing in the ICU, and these infections are negatively associated with patient outcomes. Optimization of antibiotic dosing has been suggested as a key intervention to improve clinical outcomes in patients with nosocomial pneumonia. This review describes the recent pharmacokinetic/pharmacodynamic data relevant to antibiotic dosing for nosocomial pneumonia caused by multidrug-resistant pathogens.

    RECENT FINDINGS: Optimal antibiotic treatment is challenging in critically ill patients with nosocomial pneumonia; most dosing guidelines do not consider the altered physiology and illness severity associated with severe lung infections. Antibiotic dosing can be guided by plasma drug concentrations, which do not reflect the concentrations at the site of infection. The application of aggressive dosing regimens, in accordance to the antibiotic's pharmacokinetic/pharmacodynamic characteristics, may be required to ensure rapid and effective drug exposure in infected lung tissues.

    SUMMARY: Conventional antibiotic dosing increases the likelihood of therapeutic failure in critically ill patients with nosocomial pneumonia. Alternative dosing strategies, which exploit the pharmacokinetic/pharmacodynamic properties of an antibiotic, should be strongly considered to ensure optimal antibiotic exposure and better therapeutic outcomes in these patients.

    Matched MeSH terms: Anti-Bacterial Agents/blood
  5. Ismail R, Haq AH, Azman M, Rahman AF
    J Clin Pharm Ther, 1997 Feb;22(1):21-5.
    PMID: 9292398
    In 1984 a therapeutic drug monitoring (TDM) service was established in Hospital Universiti Sains Malaysia (HUSM) and gentamicin concentrations were measured and used to design optimal regimens for the antibiotic. In this study we report on a 6-year follow-up audit since our first assessment of the service.
    Matched MeSH terms: Anti-Bacterial Agents/blood
  6. Ab Rahman AF, Md Sahak N, Ali AM
    Int J Pharm Pract, 2017 Feb;25(1):75-80.
    PMID: 28097717 DOI: 10.1111/ijpp.12336
    OBJECTIVES: Published nomograms to monitor extended-interval dosing (EID) gentamicin therapy were based on a fixed dose of 5 or 7 mg/kg. However, the average dose used for EID gentamicin regimen in our setting was about 3 mg/kg per day. We developed a new method of monitoring based on the duration of drug-free period (DFP) in a 24-h dosing interval.

    METHODS: Hospitalised adult patients on EID gentamicin were selected. We considered a DFP of between 2 and 8 h as appropriate. Data from two blood samples (2 and 6 h postdose) from each patient were used to estimate the duration of DFP (i.e. DFP method 1). DFP was also calculated for the same patient using an empirically estimated elimination rate constant (Ke ) and the same 6 h postdose concentration value (DFP method 2). Correlation between the two methods was made. An alternative graphical method to estimate DFP was attempted.

    KEY FINDINGS: Correlation between Ke and age was favourable (r = -0.453; P = 0.001). Ke derived from this empirical relationship was used to estimate DFP method 2. DFP method 1 correlated well with DFP method 2 (r = 0.742; P 

    Matched MeSH terms: Anti-Bacterial Agents/blood
  7. Mukhtar NH, Mamat NA, See HH
    J Pharm Biomed Anal, 2018 Sep 05;158:184-188.
    PMID: 29883881 DOI: 10.1016/j.jpba.2018.05.044
    A sample pre-treatment method based on a dynamic mixed matrix membrane tip extraction followed by capillary electrophoresis with contactless conductivity detection (CE-C4D) was evaluated for the determination of tobramycin in human plasma. The extraction tip device consisted of a cellulose triacetate membrane tip wall immobilised with 15% (w/w) of hydrophilic lipophilic balance (HLB) nanoparticles as adsorbent. The extraction was performed dynamically by withdrawing/dispensing the plasma sample through the tip device followed by desorption into 20 μL of acidified aqueous solution at pH 3 prior to the CE-C4D analysis. Under the optimum conditions, the detection limit of the method for tobramycin was 10 ng/mL, with intraday and interday repeatability RSDs of 3.5% and 4.5%, respectively. Relative recoveries in spiked human plasma were 99.6%-99.9%. The developed approach was successfully demonstrated for the quantification of tobramycin in human plasma samples.
    Matched MeSH terms: Anti-Bacterial Agents/blood*
  8. Ismail R, Teh LK, Choo EK
    Ann Trop Paediatr, 1998 Jun;18(2):123-8.
    PMID: 9924573
    Despite concerns about adverse effects, chloramphenicol (CMC) continues to be used in certain situations and, due to its low therapeutic index and variable pharmacokinetics, therapeutic drug monitoring (TDM) is often recommended. At our centre, CMC finds applications in typhoid and meningitis and TDM is routinely performed. Elsewhere in Malaysia, however, CMC is used without TDM. We therefore decided to evaluate our TDM for CMC in relation to its roles in CMC therapy in children, who constitute most of our patients. Our objective was also to develop strategies to improve our TDM for CMC use. Data were collected from 168 children given CMC for various indications and monitored by the TDM service. Plasma CMC was determined by HPLC and used to adjust doses to maintain concentrations within a range of 10-25 micrograms/ml. Outcomes measured included daily temperatures and haematological indices. Daily doses and plasma CMC varied greatly. Doses averaged 40.5 mg/kg for neonates and 75.5 for older children. Average peak concentrations were therapeutic in 60% and trough in 42%. Average duration of fever was 6.3 days and it was unaffected by plasma CMC. Typhoid was eradicated in 97% but nine children with other diagnoses died. Side-effects were confined to mild reversible haematological abnormalities which developed in 11% of children at plasma concentrations which tended to be high. We conclude that CMC remains useful in children with typhoid. Its use for other indications, however, should be reviewed. Routine TDM for CMC is probably not warranted, at least until a clearer role is defined by well designed prospective studies.
    Matched MeSH terms: Anti-Bacterial Agents/blood
  9. Leong CL, Buising K, Richards M, Robertson M, Street A
    Intern Med J, 2006 Jan;36(1):37-42.
    PMID: 16409311
    BACKGROUND: Aminoglycoside antibiotics are commonly prescribed for the treatment of Gram-negative infections. Appropriate dosing and therapeutic monitoring of aminoglycosides are important because these agents have a narrow therapeutic index.
    AIM: To audit gentamicin use at our hospital, focusing on selection of the initial dose and therapeutic monitoring practices, and to compare the results against recommendations in the existing hospital aminoglycoside guidelines, which had recently been promoted to doctors.
    METHODS: This audit included all inpatients receiving gentamicin at The Royal Melbourne Hospital from 1 February to 12 March 2004. The principal researcher checked the drug charts of all inpatients to identify those receiving gentamicin and collected data from the medical records and the pathology database. Doses were considered 'concordant' if the dose given was within the recommended dosing range +/-20 mg.
    RESULTS: A total of 132 courses of gentamicin was included in the study. Gentamicin was prescribed for prophylaxis in 31.1% of courses. Thirty-six per cent of patients prescribed gentamicin were more than 65 years of age. Eighty-two per cent of the gentamicin used therapeutically was given as a single daily dose. Sixty-six per cent of gentamicin initial dosing was not in accordance with existing hospital guidelines. Seventy-seven per cent of gentamicin courses requiring therapeutic drug monitoring received such monitoring; however, in only 8.8% of these was the monitoring conducted according to guidelines.
    CONCLUSION: Aminoglycoside prescribing practices at our hospital are suboptimal, despite ready access to prescribing guidelines. Provision of a guideline and education sessions with doctors do not necessarily lead to widespread adoption of recommended practices. We suggest that changes to hospital systems related to prescribing and monitoring of aminoglycosides are required.
    Matched MeSH terms: Anti-Bacterial Agents/blood
  10. Lo YL, van Hasselt JG, Heng SC, Lim CT, Lee TC, Charles BG
    Antimicrob Agents Chemother, 2010 Jun;54(6):2626-32.
    PMID: 20385872 DOI: 10.1128/AAC.01370-09
    The present study determined the pharmacokinetic profile of vancomycin in premature Malaysian infants. A one-compartment infusion model with first-order elimination was fitted to serum vancomycin concentration data (n = 835 points) obtained retrospectively from the drug monitoring records of 116 premature newborn infants. Vancomycin concentrations were estimated by a fluorescence polarization immunoassay. Population and individual estimates of clearance and distribution volume and the factors which affected the variability observed for the values of these parameters were obtained using a population pharmacokinetic modeling approach. The predictive performance of the population model was evaluated by visual inspections of diagnostic plots and nonparametric bootstrapping with replacement. Dosing guidelines targeting a value of > or =400 for the area under the concentration-time curve over 24 h in the steady state divided by the MIC (AUC(24)/MIC ratio) were explored using Monte Carlo simulation. Body size (weight), postmenstrual age, and small-for-gestational-age status are important factors explaining the between-subject variability of vancomycin pharmacokinetic parameter values for premature neonates. The typical population parameter estimates of clearance and distribution volume for a 1-kg premature appropriate-for-gestational-age neonate with a postmenstrual age of 30 weeks were 0.0426 liters/h and 0.523 liters, respectively. There was a 20% reduction in clearance for small-for-gestational-age infants compared to the level for the appropriate-for-gestational-age control. Dosage regimens based on a priori target response values were formulated. In conclusion, the pharmacokinetic parameter values for vancomycin in premature Malaysian neonates were estimated. Improved dosage regimens based on a priori target response values were formulated by incorporating body size, postmenstrual age, and small-for-gestational-age status, using Monte Carlo simulations with the model-estimated pharmacokinetic parameter values.
    Matched MeSH terms: Anti-Bacterial Agents/blood
  11. Abdul-Aziz MH, Abd Rahman AN, Mat-Nor MB, Sulaiman H, Wallis SC, Lipman J, et al.
    Antimicrob Agents Chemother, 2016 01;60(1):206-14.
    PMID: 26482304 DOI: 10.1128/AAC.01543-15
    Doripenem has been recently introduced in Malaysia and is used for severe infections in the intensive care unit. However, limited data currently exist to guide optimal dosing in this scenario. We aimed to describe the population pharmacokinetics of doripenem in Malaysian critically ill patients with sepsis and use Monte Carlo dosing simulations to develop clinically relevant dosing guidelines for these patients. In this pharmacokinetic study, 12 critically ill adult patients with sepsis receiving 500 mg of doripenem every 8 h as a 1-hour infusion were enrolled. Serial blood samples were collected on 2 different days, and population pharmacokinetic analysis was performed using a nonlinear mixed-effects modeling approach. A two-compartment linear model with between-subject and between-occasion variability on clearance was adequate in describing the data. The typical volume of distribution and clearance of doripenem in this cohort were 0.47 liters/kg and 0.14 liters/kg/h, respectively. Doripenem clearance was significantly influenced by patients' creatinine clearance (CL(CR)), such that a 30-ml/min increase in the estimated CL(CR) would increase doripenem CL by 52%. Monte Carlo dosing simulations suggested that, for pathogens with a MIC of 8 mg/liter, a dose of 1,000 mg every 8 h as a 4-h infusion is optimal for patients with a CL(CR) of 30 to 100 ml/min, while a dose of 2,000 mg every 8 h as a 4-h infusion is best for patients manifesting a CL(CR) of >100 ml/min. Findings from this study suggest that, for doripenem usage in Malaysian critically ill patients, an alternative dosing approach may be meritorious, particularly when multidrug resistance pathogens are involved.
    Matched MeSH terms: Anti-Bacterial Agents/blood
  12. Mustafa M, Chan WM, Lee C, Harijanto E, Loo CM, Van Kinh N, et al.
    Int J Antimicrob Agents, 2014 Apr;43(4):353-60.
    PMID: 24636429 DOI: 10.1016/j.ijantimicag.2014.01.017
    Doripenem is approved in the Asia-Pacific (APAC) region for treating nosocomial pneumonia (NP) including ventilator-associated pneumonia (VAP), complicated intra-abdominal infections (cIAIs) and complicated urinary tract infections (cUTIs). Clinical usage of doripenem (500mg intravenously, infused over 1h or 4h every 8h for 5-14 days) in APAC was evaluated in a prospective, open-label, non-comparative, multicentre study of inpatients (≥18 years) with NP, VAP, cIAI or cUTI. A total of 216 [intention-to-treat (ITT)] patients received doripenem: 53 NP (24.5%); 77 VAP (35.6%); 67 cIAI (31.0%); and 19 cUTI (8.8%). Doripenem MIC90 values for Pseudomonas aeruginosa, Acinetobacter baumannii, Escherichia coli and Klebsiella pneumoniae were 32, 32, 0.094 and 0.64μg/mL, respectively. Doripenem was used most commonly as monotherapy (86.6%) and as second-line therapy (62.0%). The clinical cure rate in clinically evaluable patients was 86.7% at the end of therapy (EOT) and 87.1% at test of cure (TOC) (7-14 days after EOT). In the ITT population, overall clinical cure rates were 66.2% at EOT and 56.5% at TOC. The median duration of hospital stay, intensive care unit (ICU) stay and mechanical ventilation was 20, 12 and 10 days, respectively. Of 146 discharged patients, 7 were re-admitted within 28 days of EOT; 1 VAP patient was re-admitted to the ICU. The all-cause mortality rate was 22.7% (49/216). The most common treatment-related adverse events were diarrhoea (1.4%) and vomiting (1.4%). Doripenem is a viable option for treating APAC patients with NP, VAP, cIAI or cUTI. [ClinicalTrials.gov: NCT 00986102].
    Matched MeSH terms: Anti-Bacterial Agents/blood
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links