MATERIALS AND METHODS: Five Malay patients receiving warfarin maintenance therapy were investigated for their CYP2C9*2, CYP2C9*3, and VKORC1-1639G>A genotypes and their vitamin K-dependent (VKD) clotting factor activities. The records of their daily warfarin doses and international normalized ratio (INR) 2 years prior to and after the measurement of VKD clotting factors activities were acquired. The mean warfarin doses were compared with predicted warfarin doses calculated from a genotypic-based dosing model developed for Asians.
RESULTS: A patient with the VKORC1-1639 GA genotype, who was supposed to have higher dose requirements, had a lower mean warfarin dose similar to those having the VKORC1-1639 AA genotype. This discrepancy may be due to the coadministration of celecoxib, which has the potential to decrease warfarins metabolism. Not all patients' predicted mean warfarin doses based on a previously developed dosing algorithm for Asians were similar to the actual mean warfarin dose, with the worst predicted dose being 54.34% higher than the required warfarin dose.
CONCLUSION: Multiple clinical factors can significantly change the actual required dose from the predicted dose from time to time. The additions of other dynamic variables, especially INR, VKD clotting factors, and concomitant drug use, into the dosing model are important in order to improve its accuracy.
METHODS: Warfarin relies on regular monitoring of International Normalized Ratio which is a standardized test to measure prothrombin time and appropriate dose adjustment. Pharmacometabonomics is a novel scientific field which deals with identification and quantification of the metabolites present in the metabolome using spectroscopic techniques such as Nuclear Magnetic Resonance (NMR). Pharmacometabonomics helps to indicate perturbation in the levels of metabolites in the cells and tissues due to drug or ingestion of any substance. NMR is one of the most widely-used spectroscopic techniques in metabolomics because of its reproducibility and speed.
RESULTS: There are many factors that influence the metabolism of warfarin, making changes in drug dosage common, and clinical factors like drug-drug interactions, dietary interactions and age explain for the most part the variability in warfarin dosing. Some studies have showed that pharmacogenetic testing for warfarin dosing does not improve health outcomes, and around 26% of the variation in warfarin dose requirements remains unexplained yet.
CONCLUSION: Many recent pharmacometabonomics studies have been conducted to identify novel biomarkers of drug therapies such as paracetamol, aspirin and simvastatin. Thus, a technique such as NMR based pharmacometabonomics to find novel biomarkers in plasma and urine might be useful to predict warfarin outcome.