Displaying publications 1 - 20 of 26 in total

Abstract:
Sort:
  1. Noordin R, Yunus MH, Tan Farrizam SN, Arifin N
    Adv Parasitol, 2020;109:131-152.
    PMID: 32381194 DOI: 10.1016/bs.apar.2020.01.003
    Toxocariasis is a human infection primarily caused by larvae of Toxocara canis from dogs, and also by T. cati from cats. Children have a more significant risk of acquiring the infection due to their closer contact with pets, and greater chances of ingesting soil. Diagnosis of toxocariasis is based on clinical, epidemiological, and serological data. Indirect IgG ELISA is a widely used serodiagnostic method for toxocariasis, with native T. canis TES most commonly used as the antigen. Western blots, using the same antigen, can be used to confirm positive ELISA findings to reduce false-positive results. Improvements in Toxocara serodiagnosis include the use of recombinant TES antigens, simpler and more rapid assay formats, and IgG4 subclass detection. Also, incorporation of recombinant T. cati TES protein increases the diagnostic sensitivity. Development of antigen detection tests using polyclonal and monoclonal antibodies, nanobodies, or aptamers can complement the antibody detection assays, and enhance the effectiveness of the serodiagnosis.
    Matched MeSH terms: Antigens, Helminth/immunology
  2. Khor BY, Lim TS, Noordin R, Choong YS
    J Mol Graph Model, 2017 09;76:543-550.
    PMID: 28811153 DOI: 10.1016/j.jmgm.2017.07.004
    De novo approach was applied to design single chain fragment variable (scFv) for BmR1, a recombinant antigen from Bm17DIII gene which is the primary antigen used for the detection of anti-BmR1 IgG4 antibodies in the diagnostic of lymphatic filariasis. Three epitopes of the BmR1 was previously predicted form an ab initio derived three-dimensional structure. A collection of energetically favourable conformations was generated via hot-spot-centric approach. This resulted in a set of three different scFv scaffolds used to compute the high shape complementary conformations via dock-and-design approach with the predicted epitopes of BmR1. A total of 4227 scFv designs were generated where 200 scFv designs produced binding energies of less than -20 R.E.U with shape complementarity higher than 0.5. We further selected the design with at least one hydrogen bond and one salt bridge with the epitope, thus resulted in a total of 10, 1 and 19 sFv designs for epitope 1, 2 and 3, respectively. The results thus showed that de novo design can be an alternative approach to yield high affinity in silico scFv designs as a starting point for antibody or specific binder discovery processes.
    Matched MeSH terms: Antigens, Helminth/immunology
  3. Noordin R, Abdullah KA, Azahri NA, Ramachandran CP
    PMID: 10928359
    Western blot analysis of infective larvae (L3) antigen of Brugia malayi were performed on 200 sera from six groups of individuals: 36 samples from B. malayi microfilaremic individuals; 10 samples from individuals with elephantiasis; 50 and 20 samples from amicrofilaremic individuals in a B. malayi endemic area with no anti-filarial IgG4 antibodies (towards microfilaria and adult worm antigens) and samples with high titres of the anti-filarial IgG4 antibodies respectively; 50 samples from non-endemic normals and 34 samples from geohelminth-infected individuals. After protein transfer, PVDF membrane strips were successively incubated with blocking solution, human sera, monoclonal anti-human IgG4 antibody-HRP and developed with luminol chemiluminescence substrate. 28/36 (78%), 1/10 (10%) and 16/20(80%) of sera from individuals with microfilariae, elephantiasis and amicrofilaremic individuals with high titers of anti-filarial IgG4 antibodies respectively recognized L3 antigenic epitopes; the dominant and consistent antigenic bands were of approximately MW 43 kDa, 14 kDa, 15 kDa and 59 kDa. The rest of the sera were unreactive. This study showed that microfilaremics may or may not mount a notable antibody response to somatic L3 antigens, thus lending evidence that antibody response to this antigen is not protective against establishment of Brugia malayi infection.
    Matched MeSH terms: Antigens, Helminth/immunology*
  4. Lim PK
    PMID: 7973946
    Accurate diagnosis of human filarial infections still remains a problem for clinicians and co-ordinators of filariasis control programs. Diagnosis of filariasis is based on parasitological, histopathological, clinical and immunological approaches. No significant advances have been made for the first three approaches although some refinements in their use and interpretation of results have occurred. For the immunological approach, intradermal tests and antibody detection assays using crude parasite extracts generally lack specificity and/or sensitivity to discriminate between past and present filarial infections in humans. Antigen detection assays would therefore provide a more accurate indication of active filarial infections. Several monoclonal antibodies to various stages of lymphatic filarial parasites have been developed and appear potentially useful for filarial antigen detection.
    Matched MeSH terms: Antigens, Helminth/immunology
  5. Rahmah N, Anuar AK, A'shikin AN, Lim BH, Mehdi R, Abdullah B, et al.
    Biochem Biophys Res Commun, 1998 Sep 29;250(3):586-8.
    PMID: 9784388
    Western blot analyses were performed on 444 serum specimens: 40 sera from microfilaraemic individuals, 10 sera from elephantiasis patients, 24 treated individuals, 50 sera from residents of endemic areas without anti-filarial IgG4 antibodies (endemic normals), 20 sera from amicrofilaraemic individuals with high anti-filarial IgG4 antibodies, 200 sera from healthy city-dwellers (non-endemic samples), and 100 sera from soil-transmitted helminth-infected individuals. Phast electrophoresis system was used to electrophorese Brugia malayi soluble adult worm antigen on 10-15% SDS-PAGE gradient gels followed by electrophoretic transfer onto PVDF membranes. Membrane strips were then successively incubated with blocking solution, human sera, and monoclonal anti-human IgG4 antibody-HRP, with adequate washings done in between each incubation step. Luminol chemiluminescence detection was then used to develop the blots. An antigenic band with the MW of approximately 37 kDa was found to be consistently present in the Western blots of all microfilaraemic sera, all amicrofilaraemic sera with high titres of anti-filarial IgG4 antibodies, some treated patients, and some elephantiasis patients. The antigen did not occur in immunoblots of individuals with other helminthic infections, normal endemic individuals, and city dwellers. Therefore the B. malayi antigen of with the MW of approximately 37 kDa demonstrated specific reactions with sera of B. malayi-infected individuals and thus may be useful for diagnostic application.
    Matched MeSH terms: Antigens, Helminth/immunology
  6. Tan MA, Mak JW, Yong HS
    Trop. Med. Parasitol., 1989 Sep;40(3):317-21.
    PMID: 2617040
    Two out of six monoclonals (McAbs) produced against subperiodic Brugia malayi infective larva (L3) antigens impaired B. malayi L3 motility independently of human buffy coat cells. Scanning electron microscopy studies showed damage to L3 surface and loss of regular cuticular annulations. The two McAbs (BML 1a and BM1 8b) did not affect B. malayi microfilaria (mf). They were IFAT-positive with B. malayi adult and L3 antigens; other McAbs which did not affect mf or L3 motility were IFAT-negative. All six McAbs did not promote cellular adherence of normal human buffy coat cells to mf or L3.
    Matched MeSH terms: Antigens, Helminth/immunology
  7. Balachandra D, Ahmad H, Arifin N, Noordin R
    Eur J Clin Microbiol Infect Dis, 2021 Jan;40(1):27-37.
    PMID: 32729057 DOI: 10.1007/s10096-020-03949-x
    Laboratory diagnosis of Strongyloides infections can be grouped into direct and indirect detection methods, and a combination of the two methods is often needed to reach an accurate and timely diagnosis. This review focuses on non-conventional direct detection via molecular and antigen detection assays. Conventional PCR is the most commonly used molecular diagnostic for Strongyloides. Real-time PCR is accurate and highly sensitive for quantitative and qualitative analysis. Meanwhile, PCR-RFLP can efficiently distinguish human and dog isolates of S. stercoralis, S. fuelleborni (from monkey), and S. ratti (from rodent). Loop-mediated isothermal amplification (LAMP) amplifies DNA isothermally with high specificity, efficiency, and rapidity, and has potential for point-of-care (POC) translation. As for antigen detection assay, coproantigen detection ELISAs for strongyloidiasis traditionally relied on raising rabbit polyclonal antibodies against the parasite antigens for use as capture or detection reagents. Subsequently, hybridoma technology using animals has enabled the discovery of monoclonal antibodies specific to Strongyloides antigens and was utilised to develop antigen detection assays. In recent times, phage display technology has facilitated the discovery of scFv antibody against Strongyloides protein that can accelerate the development of such assays. Improvements in both direct detection methods are being made. Strongyloides molecular diagnostics is moving from the detection of a single infection to the simultaneous detection of soil-transmitted helminths. Meanwhile, antigen detection assays can also be multiplexed and aptamers can be used as antigen binders. In the near future, these two direct detection methods may be more widely used as diagnostic tools for strongyloidiasis.
    Matched MeSH terms: Antigens, Helminth/immunology
  8. Yunus MH, Arifin N, Balachandra D, Anuar NS, Noordin R
    Am J Trop Med Hyg, 2019 08;101(2):432-435.
    PMID: 31218996 DOI: 10.4269/ajtmh.19-0053
    The conventional method of detecting Strongyloides stercoralis in fecal samples has poor diagnostic sensitivity. Detection of Strongyloides-specific antibodies increases the sensitivity; however, most tests are ELISAs that use parasite extract which may cross-react with the sera of other helminth infections. To improve the serological diagnosis of strongyloidiasis, this study aimed at developing a sensitive and specific lateral flow rapid dipstick test. Two recombinant proteins, recombinant NIE (rNIE) and recombinant Ss1a (rSs1a), were used in preparing the dipstick, with gold-conjugated antihuman IgG4 as detector reagent. In parallel, the corresponding ELISA was performed. Both assays demonstrated diagnostic sensitivity of 91.3% (21/23) when tested with serum samples of patients with Strongyloides infection, and 100% specificity with 82 sera of asymptomatic (healthy) and those with other parasitic infections. The ELISA and dipstick test results were positively correlated to each other (r = 0.6114, P = 0.0019). The developed lateral flow dipstick test may improve the serodiagnosis of strongyloidiasis and merit further validation studies.
    Matched MeSH terms: Antigens, Helminth/immunology
  9. Omar N, Hamidon NH, Yunus MH, Noordin R, Choong YS, Lim TS
    Biotechnol Appl Biochem, 2018 May;65(3):346-354.
    PMID: 28833498 DOI: 10.1002/bab.1591
    Phage display has been applied successfully as a tool for the generation of monoclonal antibodies (mAbs). Naive antibody libraries are unique as they are able to overcome several limitations associated with conventional mAb generation methods like the hybridoma technology. Here, we performed an in vitro selection and generation of Fab antibodies against Brugia malayi SXP protein (BmSXP), a recombinant antigen for the detection of lymphatic filariasis. We developed a naïve multi ethnic Fab antibody library with an estimated diversity of 2.99 × 109 . The antibody library was used to screen for mAbs against BmSXP recombinant antigen. Soluble monoclonal Fab antibodies against BmSXP were successfully isolated from the naïve library. The Fab antibodies obtained were expressed and analyzed to show its binding capability. The diversity obtained from a pool of donors from various ethnic groups allowed for a diverse antibody library to be generated. The mAbs obtained were also functional in soluble form, which makes it useful for further downstream applications. We believe that the Fab mAbs are valuable for further studies and could also contribute to improvements in the diagnosis of filariasis.
    Matched MeSH terms: Antigens, Helminth/immunology*
  10. Yunus MH, Tan Farrizam SN, Abdul Karim IZ, Noordin R
    Am J Trop Med Hyg, 2018 Jan;98(1):32-38.
    PMID: 29141740 DOI: 10.4269/ajtmh.17-0632
    Laboratory diagnosis of toxocariasis is still a challenge especially in developing endemic countries with polyparasitism. In this study, three Toxocara canis recombinant antigens, rTES-26, rTES-30, and rTES-120, were expressed and used to prepare lateral flow immunoglobulin G4 (IgG4) dipsticks. The concordance of the results of the rapid test (comprising three dipsticks) with a commercial IgG-enzyme-linked immunosorbent assay (ELISA) (Cypress Diagnostics, Belgium) was compared against the concordance of two other commercial IgG-ELISA kits (Bordier, Switzerland and NovaTec, Germany) with the Cypress kit. Using Toxocara-positive samples, the concordance of the dipstick dotted with rTES-26, rTES-30, and rTES-120 was 41.4% (12/29), 51.7% (15/29), and 72.4% (21/29), respectively. When positivity with any dipstick was considered as an overall positive rapid test result, the concordance with the Cypress kit was 93% (27/29). Meanwhile, when compared with the results of the Cypress kit, the concordance of IgG-ELISA from NovaTec and Bordier was 100% (29/29) and 89.7% (26/29), respectively. Specific IgG4 has been recognized as a marker of active infection for several helminthic diseases; therefore, the two non-concordant results of the rapid test when compared with the NovaTec IgG-ELISA kit may be from samples of people with non-active infection. All the three dipsticks showed 100% (50/50) concordance with the Cypress kit when tested with serum from individuals who were healthy and with other infections. In conclusion, the lateral flow rapid test is potentially a good, fast, and easy test for toxocariasis. Next, further validation studies and development of a test with the three antigens in one dipstick will be performed.
    Matched MeSH terms: Antigens, Helminth/immunology*
  11. Sahu PS, Parija S, Kumar D, Jayachandran S, Narayan S
    Parasite Immunol., 2014 Oct;36(10):509-21.
    PMID: 24965663 DOI: 10.1111/pim.12124
    Traditionally serum and/or CSF specimens have been used for detection of either specific antibodies or antigens as a supportive diagnosis of NCC. However, in recent days, much interest has been shown employing noninvasive specimens such as urine. In our study, we identified and compared a profile of circulating antigenic peptides of parasite origin in three different body fluids (CSF, serum and urine) obtained from confirmed NCC cases and control subjects. The circulating antigenic peptides were resolved by SDS-PAGE and subjected to immunoblotting. For confirmation of their origin as parasite somatic or excretory secretory (ES) material, immunoreactivity was tested employing affinity purified polyclonal Taenia solium metacestode anti-somatic or ES antibodies, respectively. Only lower molecular weight antigenic peptides were found circulating in urine in contrast to serum and CSF specimens. Few somatic peptides were identified to be 100% specific for NCC (19·5 kDa in all three specimens; 131, 70 kDa in CSF and serum only; 128 kDa in CSF only). Similarly, the specific ES peptides detected were 32 kDa (in all three specimens), 16·5 kDa (in serum and CSF only), and 15 kDa (urine only). A test format detecting either one or more of these specific peptides would enhance the sensitivity in diagnosis of NCC.
    Matched MeSH terms: Antigens, Helminth/immunology
  12. Khalilpour A, Sadjjadi SM, Moghadam ZK, Yunus MH, Zakaria ND, Osman S, et al.
    Am J Trop Med Hyg, 2014 Nov;91(5):994-9.
    PMID: 25200268 DOI: 10.4269/ajtmh.14-0170
    Cystic echinococcosis (CE) caused by infection with Echinococcus granulosus is of major concern for humans in many parts of the world. Antigen B was prepared from E. granulosus hydatid fluid, and Western blots confirmed eight batches showing a band corresponding to the 8-/12-kDa subunit with positive serum and no low-molecular mass band (< 15 kDa) with negative serum. The batches were pooled and used to prepare lateral flow immunoglobulin G4 (IgG4) and IgG dipsticks. Diagnostic sensitivity was determined using serum samples from 21 hydatidosis patients, and diagnostic specificity was established using sera from 17 individuals infected with other parasites and 15 healthy people. IgG4 dipstick had a diagnostic sensitivity of 95% (20 of 21) and a specificity of 100% (32 of 32). The IgG dipstick had a sensitivity of 100% (21 of 21) and a specificity of 87.5% (28 of 32). Thus, both IgG and IgG4 dipsticks had high sensitivities, but IgG4 had greater specificity for the diagnosis of human CE.
    Matched MeSH terms: Antigens, Helminth/immunology
  13. Ambu S, Rain AN, Mak JW, Maslah D, Maidah S
    PMID: 9656366
    Three MAbs 1C4.2D8, 1C4.2C4 and 1C4.1F5 were produced using sonicated adult worm antigens of Angiostrongylus malaysiensis and they were found to be secreters of IgG1. The MAbs 1C4.2C4 and 1C4.2D8 were found to react with antigens of A. malaysiensis and cross-react with the closely related A. cantonensis but not with other helminths. A total of 108 human sera collected from Orang Asli (aborigenes) from Grik, in the State of Perak were tested for A. malaysiensis infection using the MAb-ELISA. MAb 1C4.1F5 and 25 (23%) were positive. Twenty of these positive samples were tested with the MAb 1C4.2D8 and none was found to be positive.
    Matched MeSH terms: Antigens, Helminth/immunology
  14. Mak JW
    PMID: 7973952
    The lymphatic filarial parasites which affect about 90 million people worldwide have similar host-parasite relationships in man. They are all able to survive, reproduce and cause chronic infections if they can successfully evade the protective responses of the host. Studies to investigate the wide spectrum of clinical manifestations of the infection even among those living in similar endemic areas and with presumed equal exposure to infective larvae, have been hampered by the lack of animal models showing similar host-parasite responses. The recent use of the nude mouse infected with Brugia spp, and the leaf-monkey (Presbytis spp) infected with B. malayi or Wuchereria spp for the study of immune responses and the associated pathology of these infections, has elucidated some of the host protective immune responses as well as the associated immunopathological reactions. The successfully entrenched parasite elicits minimal reactions and pathology, but with the onset of effective host responses, whether assisted by chemotherapy, development of protective immunity or both, severe inflammatory responses may occur. The role of such immune mediated response in determining subsequent pathology will probably be dependent on the frequency and duration of these episodes, but these have yet to be defined. Prenatal and perinatal sensitization by filarial antigens are postulated to result in tolerance and/or modification of immune responses to subsequent infections. A role for genetic predisposition to certain clinical outcomes, for example, the development of elephantiasis, has been postulated but needs further study. Advances have also been achieved in defining those parasite antigens/products involved in eliciting or suppressing protective and other immune responses.(ABSTRACT TRUNCATED AT 250 WORDS)
    Matched MeSH terms: Antigens, Helminth/immunology*
  15. Rahumatullah A, Lim TS, Yunus MH, Noordin R
    Am J Trop Med Hyg, 2019 08;101(2):436-440.
    PMID: 31162018 DOI: 10.4269/ajtmh.19-0034
    Lymphatic filariasis is a mosquito-borne parasitic disease responsible for morbidity and disability that affects 1.2 billion people worldwide, mainly the poor communities. Currently, filarial antigen testing is the method of choice for the detection of bancroftian filariasis, and to date, there are two commonly used tests. In the present study, a recently reported recombinant monoclonal antibody (5B) specific to BmSXP filarial antigen was used in developing an ELISA for the detection of circulating filarial antigen in sera of patients with bancroftian filariasis. The performance of the ELISA was evaluated using 124 serum samples. The ELISA was positive with all sera from microfilaremic bancroftian filariasis patients (n = 34). It also showed 100% diagnostic specificity when tested with sera from 50 healthy individuals and 40 patients with other parasitic diseases. The developed assay using the novel 5B recombinant monoclonal antibody could potentially be a promising alternative antigen detection test for bancroftian filariasis.
    Matched MeSH terms: Antigens, Helminth/immunology*
  16. Eamsobhana P, Prasartvit A, Gan XX, Yong HS
    Trop Biomed, 2015 Mar;32(1):121-5.
    PMID: 25801261
    Angiostrongylus cantonensis is the most frequent cause of eosinophilic meningitis in humans in Thailand and worldwide. Because of difficulty of recovering the Angiostrongylus larvae from infected patients, detection of parasite-specific antibodies is used to support clinical diagnosis. This study tested serum samples from eosinophilic meningitis patients and individuals at risk of infection with A. cantonensis to evaluate a recently developed simple and rapid dot-immunogold filtration assay (DIGFA) for detection of specific antibodies against A. cantonensis. Purified 31-kDa glycoprotein of A. cantonensis and protein A colloidal gold conjugate were employed to detect the 31-kDa anti-A. cantonensis antibody in patients sera from the parasite endemic areas of northeast Thailand. The results were compared with those obtained by dot-blot enzyme-linked immunosorbent assay (ELISA) with 31-kDa A. cantonensis antigen. The overall positivity rate of DIGFA and dot-blot ELISA for A. cantonensis infection in 98 clinically diagnosed cases from three highly endemic districts in Khon Kaen province were 39.79% and 37.75%, respectively. Among 86 sera of subjects at risk of infection with A. cantonensis, 24.41% were positive by DIGFA and 23.25% by dot-blot ELISA. There were good correlation between the visual grading of DIGFA and dot-blot ELISA in both groups of defined sera. DIGFA is as sensitive and specific as dot-blot ELISA for confirming eosinophilic meningitis due to A. cantonensis infection, with advantages of simplicity, rapidity and without the use of specific and expensive equipment, and can be used in field settings.
    Matched MeSH terms: Antigens, Helminth/immunology
  17. Leow CY, Willis C, Chuah C, Leow CH, Jones M
    Parasite Immunol., 2020 03;42(3):e12693.
    PMID: 31880816 DOI: 10.1111/pim.12693
    AIMS: Schistosomes infect approximately 250 million people worldwide. To date, there is no effective vaccine available for the prevention of schistosome infection in endemic regions. There remains a need to develop means to confer long-term protection of individuals against reinfection. In this study, an annexin, namely annexin B30, which is highly expressed in the tegument of Schistosoma mansoni was selected to evaluate its immunogenicity and protective efficacy in a mouse model.

    METHODS AND RESULTS: Bioinformatics analysis showed that there were three potential linear B-cell epitopes and four conformational B-cell epitopes predicted from annexin B30, respectively. Full-length annexin B30 was cloned and expressed in Escherichia coli BL21(DE3). In the presence of adjuvants, the soluble recombinant protein was evaluated for its protective efficacy in two independent vaccine trials. Immunization of CBA mice with recombinant annexin B30 formulated either in alum only or alum/CpG induced a mixed Th1/Th2 cytokine profile but no significant protection against schistosome infection was detected.

    CONCLUSION: Recombinant annexin B30 did not confer significant protection against the parasite. The molecule may not be suitable for vaccine development. However, it could be an ideal biomarker recommended for immunodiagnostics development.

    Matched MeSH terms: Antigens, Helminth/immunology*
  18. Noordin R, Mohd Zain SN, Yunus MH, Sahimin N
    Trans R Soc Trop Med Hyg, 2017 08 01;111(8):370-372.
    PMID: 29206992 DOI: 10.1093/trstmh/trx062
    Background: Malaysia aims to eliminate lymphatic filariasis (LF) by the year 2020, thus the potential threat of LF from migrant workers needs to be investigated.

    Methods: Brugian and bancroftian filariasis among 484 migrant workers from six countries were investigated using rapid tests based on detection of specific IgG4 antibodies against BmR1 (Brugia Rapid) and BmSXP recombinant antigens.

    Results: The seroprevalence of brugian filariasis was very low; however, bancroftian filariasis was notable among workers from India, Nepal and Myanmar.

    Conclusion: Malaysia is not endemic for Wuchereria bancrofti, but harbors the vectors for the parasite, thus the results showed that migrant workers should be monitored for this infection.

    Matched MeSH terms: Antigens, Helminth/immunology*
  19. Ma A, Wang Y, Liu XL, Zhang HM, Eamsobhana P, Yong HS, et al.
    J Helminthol, 2019 Jan;93(1):26-32.
    PMID: 29144215 DOI: 10.1017/S0022149X17001080
    Human gnathostomiasis is an emerging food-borne parasitic disease caused by nematodes of the genus Gnathostoma. Currently, serological tests are commonly applied to support clinical diagnosis. In the present study, a simple and rapid filtration-based test, dot immune-gold filtration assay (DIGFA) was developed using a partially purified antigen of Gnathostoma third-stage larvae (L3). A total of 180 serum samples were tested to evaluate the diagnostic potential of DIGFA for gnathostomiasis. The diagnostic sensitivity and specificity were 96.7% (29/30) and 100% (25/25), respectively. The cross-reactivity with sera from other helminthiasis patients ranged from 0 to 4%, with an average of 1.6% (2/125). DIGFA using a partially purified L3 antigen was not only simple and rapid, but also more accurate than standard assays for the diagnosis of human gnathostomiasis. DIGFA may represent a promising tool for application in laboratories or in the field, without requiring any instrumentation.
    Matched MeSH terms: Antigens, Helminth/immunology*
  20. Norhaida A, Suharni M, Liza Sharmini AT, Tuda J, Rahmah N
    Ann Trop Med Parasitol, 2008 Mar;102(2):151-60.
    PMID: 18318937 DOI: 10.1179/136485908X252250
    Currently, the laboratory diagnosis of toxocariasis, caused by Toxocara canis or T. cati, mainly relies on serological tests. Unfortunately, however, the specificities of most of the commercial tests that are available for the serodiagnosis of this disease are not very high and this may cause problems, especially in tropical countries where co-infections with other helminths are common. In an effort to develop a serological assay with improved specificity for the detection of Toxocara infection, an IgG(4)-ELISA based on a recombinant version (rTES-30USM) of the 30-kDa Toxocara excretory-secretory antigen (TES-30) has recently been developed. To produce the antigen, the TES-30 gene was cloned via assembly PCR, subcloned into a His-tagged prokaryotic expression vector, and purified by affinity chromatography using Ni(2+)-nitrilotriacetic-acid (Ni-NTA) resin. The performance of the ELISA based on the recombinant antigen was then compared with that of commercial kit, based on an IgG-ELISA, for the serodiagnosis of toxocariasis (Toxocara IgG-ELISA; Cypress Diagnostics, Langdorp, Belgium). Both assays were used to test 338 serum samples, including 26 samples from probable cases of toxocariasis. Assuming that all the probable cases were true cases, the assay based on rTES-30USM demonstrated a sensitivity of 92.3% (24/26) and a specificity of 89.6% (103/115) whereas the commercial kit exhibited a sensitivity of 100% (26/26) but a specificity of only 55.7% (64/115). The high sensitivity and specificity exhibited by the new IgG(4)-ELISA should make the assay a good choice for use in tropical countries and any other area where potentially cross-reactive helminthic infections are common.
    Matched MeSH terms: Antigens, Helminth/immunology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links