Displaying all 6 publications

Abstract:
Sort:
  1. Hadibarata T, Zubir MM, Rubiyatno, Chuang TZ
    Bioprocess Biosyst Eng, 2013 Sep;36(9):1229-33.
    PMID: 23135490 DOI: 10.1007/s00449-012-0850-x
    Armillaria sp. F022, a white-rot fungus isolated from decayed wood in tropical rain forest was used to biodegrade anthracene in cultured medium. The percentage of anthracene removal by Armillaria sp. F022 reached 13 % after 7 days and at the end of the experiment, anthracene removal level was at 87 %. The anthracene removal through sorption and transformation was investigated. 69 % of eliminated anthracene was transformed by Armillaria sp. F022 to form other organic structure, while only 18 % was absorbed in the mycelia. In the kinetic experiment, anthracene dissipation will not stop even though the biomass had stopped growing. Anthracene removal by Armillaria sp. F022 was correlated with protein concentration (whole biomass) in the culture. The production of enzyme was affected by biomass production. Anthracene was transformed to two stable metabolic products. The metabolites were extracted in ethyl-acetate, isolated by column chromatography, and then identified using gas chromatography-mass spectrometry (GC-MS).
    Matched MeSH terms: Armillaria/metabolism*
  2. Hadibarata T, Kristanti RA
    Bioprocess Biosyst Eng, 2014 Apr;37(4):593-600.
    PMID: 23943046 DOI: 10.1007/s00449-013-1025-0
    The effects of structure and concentration of surfactants on the biodegradation of fluoranthene, a three rings polycyclic aromatic hydrocarbon in the aqueous phase, as well as their effects on the biodegradation and enzyme activity were investigated. The toxicity ranking of studied surfactants is: non-ionic Tween 80 Armillaria sp. F022 (>4,500 mg/L) was showed by Tween 80 (10 mg/L) culture, manifesting that the non-ionic surfactant present in the culture were beneficial to the fungal growth. Laccase showed the highest enzymes activity in all surfactants culture. Non-ionic Tween 80 showed a significant result for laccase activity (1,902 U/L) in the Armillaria sp. F022 culture. The increased enzymes cumulative activity may stem directly from the rising fluoranthene biodegradability as addition of appropriate surfactants. The biotransformation of fluoranthene was greatly improved by Tween 80, and totally fluoranthene degradation was obtained as Tween 80 was 10 mg/L. Two fluoranthene metabolites were isolated from the culture medium and analyzed by a thin layer chromatography, UV visible spectrometer and gas chromatography-mass spectrometry (GC-MS). The oxidation of fluoranthene is initiated by oxygenation at the C-2,3 positions resulting 9-fluorenone. At the end of experiment, one metabolite was detected in the culture extract and identified as phthalic acid. Evidently, Armillaria sp. F022 seems efficient, high effective and deserves further application on the enhanced bioremediation technologies for the treatment of fluoranthene-contaminated soil.
    Matched MeSH terms: Armillaria/metabolism*
  3. Hadibarata T, Kristanti RA
    Biodegradation, 2014 Jun;25(3):373-82.
    PMID: 24114532 DOI: 10.1007/s10532-013-9666-x
    A diverse surfactant, including the nonionic Tween 80 and Brij 30, the anionic sodium dodecyl sulphate, the cationic surfactant Tetradecyltrimethylammonium bromide, and biosurfactant Rhamnolipid were investigated under fluorine-enriched medium by Armilaria sp. F022. The cultures were performed at 25 °C in malt extract medium containing 1 % of surfactant and 5 mg/L of fluorene. The results showed among the tested surfactants, Tween-80 harvested the highest cell density and obtained the maximum specific growth rate. This due Tween-80 provide a suitable carbon source for fungi. Fluorane was also successfully eliminated (>95 %) from the cultures within 30 days in all flasks. During the experiment, laccase production was the highest among other enzymes and Armillaria sp. F022-enriched culture containing Non-ionic Tween 80 showed a significant result for laccase activity (1,945 U/L). The increased enzyme activity was resulted by the increased biodegradation activity as results of the addition of suitable surfactants. The biotransformation of fluorene was accelerated by Tween 80 at the concentration level of 10 mg/L. Fluorene was initially oxidized at C-2,3 positions resulting 9-fluorenone. Through oxidative decarboxylation, 9-fluorenone subjected to meta-cleavage to form salicylic acid. One metabolite detected in the end of experiment, was identified as catechol. Armillaria sp. F022 evidently posses efficient, high effective degrader and potential for further application on the enhanced bioremediation technologies for treating fluorene-contaminated soil.
    Matched MeSH terms: Armillaria/metabolism*
  4. Hadibarata T, Yusoff AR, Aris A, Kristanti RA
    J Environ Sci (China), 2012;24(4):728-32.
    PMID: 22894109
    Armillaria sp. F022, a white rot fungus isolated from tropical rain forest (Samarinda, Indonesia) was used to biodegrade naphthalene in cultured medium. Transformation of naphthalene by Armillaria sp. F022 which is able to use naphthalene, a two ring-polycyclic aromatic hydrocarbon (PAH) as a source of carbon and energy was investigated. The metabolic pathway was elucidated by identifying metabolites, biotransformation studies and monitoring enzyme activities in cell-free extracts. The identification of metabolites suggests that Armillaria sp. F022 initiates its attack on naphthalene by dioxygenation at its C-1 and C-4 positions to give 1,4-naphthoquinone. The intermediate 2-hydroxybenzaldehyde and salicylic acid, and the characteristic of the meta-cleavage of the resulting diol were identified in the long-term incubation. A part from typical metabolites of naphthalene degradation known from mesophiles, benzoic acid was identified as the next intermediate for the naphthalene pathway of this Armillaria sp. F022. Neither phthalic acid, catechol and cis,cis-muconic acid metabolites were detected in culture extracts. Several enzymes (manganese peroxidase, lignin peroxidase, laccase, 1,2-dioxygenase and 2,3-dioxygenase) produced by Armillaria sp. F022 were detected during the incubation.
    Matched MeSH terms: Armillaria/metabolism*
  5. Hadibarata T, Kristanti RA
    Bioresour Technol, 2012 Mar;107:314-8.
    PMID: 22209445 DOI: 10.1016/j.biortech.2011.12.046
    Armillaria sp. F022, a white-rot fungus isolated from a tropical rain forest in Samarinda, Indonesia, was used to biodegrade benzo[a]pyrene (BaP). Transformation of BaP, a 5-ring polycyclic aromatic hydrocarbon (PAH), by Armillaria sp. F022, which uses BaP as a source of carbon and energy, was investigated. However, biodegradation of BaP has been limited because of its bioavailability and toxicity. Five cosubstrates were selected as cometabolic carbon and energy sources. The results showed that Armillaria sp. F022 used BaP with and without cosubstrates. A 2.5-fold increase in degradation efficiency was achieved after addition of glucose. Meanwhile, the use of glucose as a cosubstrate could significantly stimulate laccase production compared with other cosubstrates and not using any cosubstrate. The metabolic pathway was elucidated by identifying metabolites, conducting biotransformation studies, and monitoring enzyme activities in cell-free extracts. The degradation mechanism was determined through the identification of several metabolites: benzo[a]pyrene-1,6-quinone, 1-hydroxy-2-benzoic acid, and benzoic acid.
    Matched MeSH terms: Armillaria/metabolism*
  6. Hadibarata T, Zubir MM, Rubiyatno, Chuang TZ, Yusoff AR, Salim MR, et al.
    Folia Microbiol (Praha), 2013 Sep;58(5):385-91.
    PMID: 23307571 DOI: 10.1007/s12223-013-0221-2
    Characterization of anthracene metabolites produced by Armillaria sp. F022 was performed in the enzymatic system. The fungal culture was conducted in 100-mL Erlenmeyer flask containing mineral salt broth medium (20 mL) and incubated at 120 rpm for 5-30 days. The culture broth was then centrifuged at 10,000 rpm for 45 min to obtain the extract. Additionally, the effect of glucose consumption, laccase activity, and biomass production in degradation of anthracene were also investigated. Approximately, 92 % of the initial concentration of anthracene was degraded within 30 days of incubation. Dynamic pattern of the biomass production was affected the laccase activity during the experiment. The biomass of the fungus increased with the increasing of laccase activity. The isolation and characterization of four metabolites indicated that the structure of anthracene was transformed by Armillaria sp. F022 in two routes. First, anthracene was oxidized to form anthraquinone, benzoic acid, and second, converted into other products, 2-hydroxy-3-naphthoic acid and coumarin. Gas chromatography-mass spectrometry analysis also revealed that the molecular structure of anthracene was transformed by the action of the enzyme, generating a series of intermediate compounds such as anthraquinone by ring-cleavage reactions. The ligninolytic enzymes expecially free extracellular laccase played an important role in the transformation of anthracene during degradation period.
    Matched MeSH terms: Armillaria/metabolism*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links