Displaying all 3 publications

Abstract:
Sort:
  1. Ahmad A, Ramasamy K, Majeed AB, Mani V
    Pharm Biol, 2015 May;53(5):758-66.
    PMID: 25756802 DOI: 10.3109/13880209.2014.942791
    Soybean and its fermented products are the most common source of isoflavones in human food.
    Matched MeSH terms: Aspartic Acid Endopeptidases/antagonists & inhibitors*
  2. Mani V, Ramasamy K, Ahmad A, Parle M, Shah SA, Majeed AB
    Food Chem Toxicol, 2012 Mar;50(3-4):1036-44.
    PMID: 22142688 DOI: 10.1016/j.fct.2011.11.037
    Dementia is a syndrome of gradual onset and continuous decline of higher cognitive functioning. It is a common disorder in older persons and has become more prevalent today. The fresh leaves of Murraya koenigii are often added to various dishes in Asian countries due to the delicious taste and flavor that they impart. These leaves have also been proven to have health benefits. In the present study, the effect of total alkaloidal extract from M. koenigii leaves (MKA) on cognitive functions and brain cholinesterase activity in mice were determined. In vitro β-secretase 1 (BACE1) inhibitory activity was also evaluated. The total alkaloidal extract was administered orally in three doses (10, 20 and 30 mg/kg) for 15 days to different groups of young and aged mice. Elevated plus maze and passive avoidance apparatus served as the exteroceptive behavioral models for testing memory. Diazepam-, scopolamine-, and ageing-induced amnesia served as the interoceptive behavioral models. MKA (20 and 30 mg/kg, p.o.) showed significant improvement in memory scores of young and aged mice. Furthermore, the same doses of MKA reversed the amnesia induced by scopolamine (0.4 mg/kg, i.p.) and diazepam (1 mg/kg, i.p.). Interestingly, the brain cholinesterase activity was also reduced significantly by total alkaloidal extract of M. koenigii leaves. The IC50 value of MKA against BACE1 was 1.7 μg/mL. In conclusion, this study indicates MKA to be a useful remedy in the management of Alzheimer's disease and dementia.
    Matched MeSH terms: Aspartic Acid Endopeptidases/antagonists & inhibitors
  3. Harun A, James RM, Lim SM, Abdul Majeed AB, Cole AL, Ramasamy K
    BMC Complement Altern Med, 2011 Sep 24;11:79.
    PMID: 21943123 DOI: 10.1186/1472-6882-11-79
    BACKGROUND: BACE1 was found to be the major β-secretase in neurons and its appearance and activity were found to be elevated in the brains of AD patients. Fungal endophytic extracts for BACE1 inhibitory activity and cytotoxicity against PC-12 (a rat pheochromocytoma with neuronal properties) and WRL68 (a non-tumorigenic human hepatic) were investigated.

    METHODS: Endophytes were isolated from plants collected from Kuala Pilah, Negeri Sembilan and the National Park, Pahang and the extracts were tested for BACE1 inhibition. For investigation of biological activity, the pure endophytic cultures were cultivated for 14 days on PDA plates at 28°C and underwent semipolar extraction with ethyl acetate.

    RESULTS: Of 212 endophytic extracts (1000 μg/ml), 29 exhibited more than 90% inhibition of BACE1 in the preliminary screening. Four extracts from isolates HAB16R13, HAB16R14, HAB16R18 and HAB8R24 identified as Cytospora rhizophorae were the most active with IC(50(BACE1)) values of less than 3.0 μg/ml. The most active extract HAB16R13 was shown to non-competitively inhibit BACE1 with K(i) value of 10.0 μg/ml. HAB16R13 was considered non-potent against PC-12 and WRL68 (IC(50(CT))) of 60.0 and 40.0 μg/ml, respectively).

    CONCLUSIONS: This first report on endophytic fungal extract with good BACE1 inhibitory activity demonstrates that more extensive study is required to uncover the potential of endophytes.

    Matched MeSH terms: Aspartic Acid Endopeptidases/antagonists & inhibitors*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links