448 isolates of methicillin-resistant Staphylococcus aureus (MRSA) from clinical specimens of patients from the University Hospital, Kuala Lumpur, were phage-typed. These included 35 strains causing two separate outbreaks of infection, one in surgical Ward 6B and another in the Special Care Nursery (SCN). Antibiograms of these outbreak strains in Ward 6B and SCN were entirely different. Phage-typing revealed that 72% of the MRSA isolates were typable. They were typed entirely by Group III phages, the majority (76%) of which were phage type 85. There was only one isolate in SCN which was typed by Group I (phage 80) and Group III phages. None were typed by phages 94, 95, 96 and Group II phages. 14.6% of the typable isolates gave the long pattern reaction of the phage 6/47/54/75/77/83A/84/85 complex. The majority of the outbreak strains in Ward 6B were of phage type 85, whereas those in the SCN were all of the 6/47/54/75/77/83A/84 phage pattern with the exception of one isolate which was also typed by phage 80, a Group I phage.
Twenty-one isolates of methicillin-resistant Staphylococcus aureus (MRSA) from Malaysia (M-MRSA) derived from various sources associated with nosocomial infections were phage-typed and compared with 54 international isolates associated with epidemic and sporadic episodes of infections. It appeared that the majority of M-MRSA were non-typable by the international basic set of phages. Two (9.5%) were typed by phage 85. Phage-typing of MRSA revealed that the strains were almost completely restricted to phage groups III and a lesser portion to phage groups I and III.
The pattern of phage types of 2553 strains of Salmonella typhi isolated over the 10-year period 1970-9 was studied. During the period 29 different phage types were encountered, not including the categories of 'untypable strains', 'degraded Vi-strains' and Vi negative strains. For the period as a whole, the commonest phage types encountered were A (20.9%), E1 (14.8%), D1 (10.3%), degraded Vi positive strains (10.3%), untypable Vi strains (7.3%), C4 (7.1%), D2 (4.4%), E2 (3.9%) and type 25 (2.6%). There were phage types which appeared in the early years of the period and then disappeared (types B2, D9 and D1-N). Others only made their appearance in recent years (K1 and 53). Notable differences were also seen in the predilection of some phage types for certain geographical areas.
Methicillin-resistant Staphylococcus aureus (MRSA) as a hospital pathogen has presented many clinical problems in the University Hospital, Kuala Lumpur, Malaysia since 1978. The need for control of spread of these organisms became evident by 1985 when it was noted that the incidence of MRSA among S. aureus isolated from hospital inpatients had increased from 11.5% in 1979 to 18.8% in 1985. The characteristics of 50 MRSA isolates associated with nosocomial infections in the hospital are described here. The predominant strains produced Type IV coagulase and 84% of isolates studied showed moderate to high resistance to methicillin with MIC values of 25 mg l-1 or higher. All the MRSA isolates that could be phagetyped were susceptible to Group III phages, with 76.6% of the isolates being susceptible to phage 85. At least 10 different patterns were distinguishable by plasmid typing, the majority of isolates harbouring up to four small plasmids.
A number of countries, including developed countries, still have typhoid fever as a major problem resulting in frequent outbreaks. The importance of controlling spread of typhoid fever is well known and necessitates periodic studies to delineate epidemiological relationships. Although phage typing remains to be the preferred conventional method for characterisation of typhoid bacilli, it is of limited use due to prevalence of few predominant phage types in the country like India. Therefore, an effort has been made to assess three molecular methods [Outer Membrane Protein (OMP) Profiling, Random Amplification of Polymorphic DNA (RAPD) and Pulsed Field Gel Electrophoresis (PFGE)] for typing of Salmonella enterica serovar Typhi. 128 Salmonella enterica serovar Typhi isolates were identified using biotyping and serotyping followed by antimicrobial susceptibility testing. These isolates were further subjected to OMP analysis, RAPD and PFGE. PFGE (114 unique clusters) was found to be the most discriminatory method followed by RAPD (94 unique clusters) and OMP profiling (50 unique clusters). Multidrug resistant strains were well discriminated by all three methods used in the study. PFGE still remains the most preferred method for detailed epidemiological investigations. However, random amplification of polymorphic DNA and outer membrane protein profiling can also be considered for molecular discrimination of the isolates in the laboratories lacking high-end facilities.
Strains of Salmonella typhi implicated in two separate cases of laboratory acquired infection from patients and the medical laboratory technologists who processed the patients' samples were analysed by pulsed-field gel electrophoresis. Although all four isolates were of bacteriophage type E1, PFGE was able to demonstrate that the strains responsible for the two laboratory acquired cases were not genetically related. The PFGE patterns of the isolates from the MLTs were found to be identical to those of the corresponding patients after digestion with restriction enzyme AvrII. This provided genetic as well as epidemiological evidence for the source of the laboratory acquired infections.
Pulsed-field gel electrophoresis (PFGE) of XbaI-digested chromosomal DNA was performed on 133 strains of Salmonella enterica serovar Typhi obtained from Papua New Guinea, with the objective of assessing the temporal variation of these strains. Fifty-two strains that were isolated in 1992 and 1994 were of one phage type, D2, and only two predominant PFGE profiles, X1 and X2, were present. Another 81 strains isolated between 1997 and 1999 have shown divergence, with four new phage types, UVS I (n = 63), UVS (n = 5), VNS (n = 4), and D1 (n = 9), and more genetic variability as evidenced by the multiple and new PFGE XbaI profiles (21 profiles; Dice coefficient, F = 0.71 to 0.97). The two profiles X1 and X2 have remained the stable, dominant subtypes since 1992. Cluster analysis based on the unweighted pair group method using arithmetic averages algorithm identifies two main clusters (at 87% similarity), indicating that the divergence of the PFGE subtypes was probably derived from some genomic mutations of the X1 and X2 subtypes. The majority of isolates were from patients with mild and moderate typhoid fever and had various XbaI profiles. A single isolate from a patient with fatal typhoid fever had a unique X11 profile, while four of six isolates from patients with severe typhoid fever had the X1 pattern. In addition, 12 paired serovar Typhi isolates recovered from the blood and fecal swabs of individual patients exhibited similar PFGE patterns, while in another 11 individuals paired isolates exhibited different PFGE patterns. Three pairs of isolates recovered from three individuals had different phage types and PFGE patterns, indicating infection with multiple strains. The study reiterates the usefulness of PFGE in assessing the genetic diversity of S. enterica serovar Typhi for both long-term epidemiology and in vivo stability and instability within an individual patient.