Displaying all 18 publications

Abstract:
Sort:
  1. Amin Nordin FD, Mohd Khalid MKN, Abdul Aziz SM, Mohamad Bakri NA, Ahmad Ridzuan SN, Abdul Jalil J, et al.
    J Clin Lab Anal, 2020 Jun;34(6):e23254.
    PMID: 32141626 DOI: 10.1002/jcla.23254
    BACKGROUND: Serum protein electrophoresis (SPE) is a widely used laboratory technique to diagnose patients with multiple myeloma (MM) and other disorders related to serum protein. In patients with MM, abnormal monoclonal protein can be detected by SPE and further characterized using immunofixation electrophoresis (IFE). There are several semi-automated agarose gel-based systems available commercially for SPE and IFE. In this study, we sought to evaluate the analytical performance of fully automated EasyFix G26 (EFG26) and semi-automated HYDRASYS 2 SCAN (H2SCAN) for both SPE and IFE.

    METHODS: Both instruments were operated according to manufacturer's instructions. Samples used include a commercially available normal control serum (NCS) and patients' specimens. The following were evaluated: precision and comparison studies for SPE, and reproducibility and comparison studies for IFE. Statistical analyses were performed using Microsoft Excel.

    RESULTS: For SPE repeatability study, our results showed that EFG26 has higher coefficient of variation (%CV) compared with H2SCAN for both samples except for monoclonal component with %CV of 0.97% and 1.18%, respectively. Similar results were obtained for SPE reproducibility study except for alpha-1 (4.16%) and beta (3.13%) fractions for NCS, and beta fractions (5.36%) for monoclonal sample. Subsequently, reproducibility for IFE was 100% for both instruments. Values for correlation coefficients between both instruments ranged from 0.91 to 0.98 for the five classic bands.

    CONCLUSION: Both instruments demonstrated good analytical performance characterized by high precision, reproducibility and correlation.

    Matched MeSH terms: Blood Protein Electrophoresis/instrumentation*; Blood Protein Electrophoresis/methods
  2. Sthaneshwar P, Nadarajan V, Maniam JA, Nordin N, Gin Gin G
    Clin Chem Lab Med, 2009;47(9):1101-7.
    PMID: 19728852 DOI: 10.1515/CCLM.2009.260
    Measurement of serum free light chains (FLCs) has recently become available for the diagnosis and monitoring of patients with plasma cell dyscrasias. The aim of this study was to investigate the performance of the serum FLC assay as a tumour marker by comparing FLC concentrations with serum protein electrophoresis (PE) results in the diagnosis of multiple myeloma (MM). In addition, we also evaluated the prognostic value of the baseline serum FLC ratio in patients with MM.
    Matched MeSH terms: Blood Protein Electrophoresis/methods*
  3. Welch QB, Lie-Injo LE
    Hum Hered, 1972;22(5):503-7.
    PMID: 4670071
    Matched MeSH terms: Blood Protein Electrophoresis
  4. LLEWELLYN-JONES D
    J Obstet Gynaecol Br Commonw, 1965 Apr;72:242-8.
    PMID: 14273103
    Matched MeSH terms: Blood Protein Electrophoresis*
  5. Pasangna J, George E, Nagaratnam M
    Malays J Pathol, 2005 Jun;27(1):33-7.
    PMID: 16676691
    A 2-year-old Malay boy was brought to the University Malaya Medical Centre for thalassaemia screening. Physical examination revealed thalassaemia facies, pallor, mild jaundice, hepatomegaly and splenomegaly. Laboratory investigations on the patient including studies on the parents lead to a presumptive diagnosis of homozygous Haemoglobin Lepore (Hb Lepore). The aim of this paper is to increase awareness of this rare disorder, this being the first case documented in Malaysia in a Malay. The case also demonstrates the need for this disorder to be included in the differential diagnosis of patients presenting clinically like thalassemia intermedia or thalassemia major. Accurate diagnosis would provide information necessary for prenatal diagnosis, proper clinical management and genetic counseling. The clinical, haematological and laboratory features of this disorder are discussed in this paper.
    Matched MeSH terms: Blood Protein Electrophoresis
  6. Chan KL, Dhaliwal SS, Yong HS
    Comp. Biochem. Physiol., B, 1979;64(4):329-37.
    PMID: 318313
    1. Nine erythrocyte proteins coded by a separate locus each were analysed in and among seven Malayan species of Rattus belonging to three subgenera. 2. Electrophoretic data obtained confirm the specific status of the seven taxa and divide the seven species into three groups which correspond with Ellerman's (1949) subgenera Stenomys, Maxomys and Leopoldamys. 3. A comparative study together with 11 other species of Malayan Rattus previously analysed show that, with few exceptions, the overall relationships among the 18 species based on electrophoretic data correspond well with conclusions based on morphological evidence. 4. Malayan species of Rattus are relatively very diverse genetically (S = 0.27, range 0.01-0.94).
    Matched MeSH terms: Blood Protein Electrophoresis
  7. Lie-Injo Luan Eng, Lopez CG, Poey-Oey Hoey Giok
    Am J Hum Genet, 1968 Mar;20(2):101-6.
    PMID: 5643177
    Matched MeSH terms: Blood Protein Electrophoresis
  8. Eng LI, Kamuzora H, Lehmann H
    J Med Genet, 1974 Mar;11(1):25-30.
    PMID: 4837284
    Matched MeSH terms: Blood Protein Electrophoresis
  9. Ong HC
    Acta Haematol., 1974;52(4):220-2.
    PMID: 4217527 DOI: 10.1159/000208244
    Haemoglobin E complicates 22.2°/o of pregnancy in Malaysian aborigines, the prevalence of variants associated with pregnancy being, 15.8% with Hb E trait abnormality, 3.9% with Hb E homozygous disease, and 2.5% with Hb E thalassaemia disease. Minor haematological abnormalities occur with the trait and homozygous conditions, though a more unfavourable response is expected with Hb E thalassaemia. Haemolysis is not a prominent feature and it is suggested that factors other than the haemoglobinopathic state
    probably accounts for any unfavourable response in pregnancy.
    Key Words: Haemoglobin E; Haemoglobinopathies; Haemolytic anaemias; Hb E thalassaemia; Malaysia; Pregnancy
    Study site: Hospital Orang Asli, Gombak, Selangor, Malaysia
    Matched MeSH terms: Blood Protein Electrophoresis
  10. Welch QB, Lie-Injo Luan Eng, Bolton JM
    Hum Hered, 1972;22(1):28-37.
    PMID: 4624781
    Matched MeSH terms: Blood Protein Electrophoresis
  11. Chan KL
    Hum Hered, 1971;21(2):173-9.
    PMID: 5127408
    Matched MeSH terms: Blood Protein Electrophoresis
  12. Lie-Injo Luan Eng, Weitkamp LR, Kosasih EN, Bolton JM, Moore CL
    Hum Hered, 1971;21(4):376-83.
    PMID: 5003129
    Matched MeSH terms: Blood Protein Electrophoresis
  13. Lie-Injo LE, Ganesan J, Clegg JB, Weatherall DJ
    Blood, 1974 Feb;43(2):251-9.
    PMID: 4810076
    Matched MeSH terms: Blood Protein Electrophoresis
  14. Lie-Injo LE, Lopez CG, Lopes M
    Acta Haematol., 1971;46(2):106-20.
    PMID: 4331171 DOI: 10.1159/000208565
    A study of 23 patients with Hb H disease and their 82 relatives in 17 families showed that 2 types of this condition exist. One is associated with the presence of a small slow-moving component, which we tentatively called the X component and which was invariably present in one parent. Some siblings also had it. The other type was not associated with this component. Two patients without X component had a newborn with Bart’s haemoglobin without X component. None of the parents of 20 newborns with Hb Bart’s without the X component had the X component. It was present in only one parent of each of 2 newborns with Hb Bart’s and the X component. They are thought to represent Hb H disease in the newborn period. We suggest that at least 3 abnormal genes may lead to Hb H disease, which results when 2 of the 3 combine. Severity of clinical and haematological symptoms depends upon which abnormal gene is present and which 2 are involved in any particular combination.
    Key Words: a-Thalassaemia; Haemoglobin Bart’s; Haemoglobin H disease; Haemoglobinopathies
    Matched MeSH terms: Blood Protein Electrophoresis
  15. Luan Eng LI, Wiltshire BG, Lehmann H
    Biochim. Biophys. Acta, 1973 Oct 18;322(2):224-30.
    PMID: 4765089
    Matched MeSH terms: Blood Protein Electrophoresis
  16. Eng LI, McKay DA, Govindasamy S
    PMID: 5002823
    Matched MeSH terms: Blood Protein Electrophoresis
  17. Lopez CG, Lie-Injo Luan Eng
    Hum Hered, 1971;21(2):185-91.
    PMID: 5127409
    Matched MeSH terms: Blood Protein Electrophoresis
  18. Tan JAMA, Yap SF, Tan KL, Wong YC, Wee YC, Kok JL
    Acta Haematol., 2003;109(4):169-75.
    PMID: 12853688 DOI: 10.1159/000070965
    Molecular characterization of the compound heterozygous condition - (G)gamma((A)gammadeltabeta)(o)/beta-thalassemia - in four families showing mild beta-thalassemia intermedia was carried out using DNA amplification techniques. Using the Amplification Refractory Mutation System (ARMS) to confirm the beta-mutations and DNA amplification to detect the 100-kb Chinese-specific (G)gamma((A)gammadeltabeta)(o)-deletion, ()two families were confirmed to possess (G)gamma((A)gammadeltabeta)(o)/beta-thalassemia with the IVSII No. 654 beta(+)-allele. In the third family, the (G)gamma((A)gammadeltabeta)(o)-deletion was confirmed in the father and the mother was a beta-thalassemia carrier with the cd 41-42 beta(o)-allele. Their affected child with (G)gamma((A)gammadeltabeta)(o)/beta-thalassemia was found to be transfusion dependent. The same (G)gamma((A)gammadeltabeta)(o)-deletion and beta-thalassemia (cd 41-42) was also confirmed in a fourth family. In addition, the mother was also diagnosed with Hb H disease (genotype -alpha(3.7)/-(SEA)). Both the children were found to possess (G)gamma((A)gammadeltabeta)(o)/beta-thalassemia but they were not transfusion dependent and this could be due to co-inheritance of alpha-thalassemia-2 (genotype-alpha(3.7)/alphaalpha) in the children together with their compound heterozygous condition.
    Matched MeSH terms: Blood Protein Electrophoresis
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links