Displaying all 5 publications

Abstract:
Sort:
  1. Leong WC, Manan HA, Hsien CCM, Wong YF, Yahya N
    Support Care Cancer, 2024 Jun 26;32(7):460.
    PMID: 38918218 DOI: 10.1007/s00520-024-08655-4
    INTRODUCTIONS: Radical radiotherapy (RT) is the cornerstone of Head and Neck (H&N) cancer treatment, but it often leads to fatigue due to irradiation of brain structures, impacting patient quality of life.

    OBJECTIVE: This study aimed to systematically investigate the dose correlates of fatigue after H&N RT in brain structures.

    METHODS: The systematic review included studies that examined the correlation between fatigue outcomes in H&N cancer patients undergoing RT at different time intervals and brain structures. PubMed, Scopus, and WOS databases were used in the systematic review. A methodological quality assessment of the included studies was conducted following the PRISMA guidelines. After RT, the cohort of H&N cancer patients was analyzed for dose correlations with brain structures and substructures, such as the posterior fossa, brainstem, cerebellum, pituitary gland, medulla, and basal ganglia.

    RESULT: Thirteen studies meeting the inclusion criteria were identified in the search. These studies evaluated the correlation between fatigue and RT dose following H&N RT. The RT dose ranged from 40 Gy to 70 Gy. Most of the studies indicated a correlation between the trajectory of fatigue and the dose effect, with higher levels of fatigue associated with increasing doses. Furthermore, five studies found that acute and late fatigue was associated with dose volume in specific brain structures, such as the brain stem, posterior fossa, cerebellum, pituitary gland, hippocampus, and basal ganglia.

    CONCLUSION: Fatigue in H&N RT patients is related to the radiation dose received in specific brain areas, particularly in the posterior fossa, brain stem, cerebellum, pituitary gland, medulla, and basal ganglia. Dose reduction in these areas may help alleviate fatigue. Monitoring fatigue in high-risk patients after radiation therapy could be beneficial, especially for those experiencing late fatigue.

    Matched MeSH terms: Brain/radiation effects
  2. Sabarudin A, Yusof MZ, Mohamad M, Sun Z
    Radiat Prot Dosimetry, 2014 Dec;162(3):316-21.
    PMID: 24255172 DOI: 10.1093/rpd/nct280
    A study on the radiation dose associated with cerebral CT angiography (CTA) and CT perfusion (CTP) was conducted on an anthropomorphic phantom with the aim of estimating the effective dose (E) and entrance skin dose (ESD) in the eyes and thyroid gland during different CTA and CTP protocols. The E was calculated to be 0.61 and 0.28 mSv in CTA with 100 and 80 kV(p), respectively. In contrast, CTP resulted in an estimated E of 2.74 and 2.07 mSv corresponding to 40 and 30 s protocols, respectively. The eyes received a higher ESD than the thyroid gland in all of these protocols. The results of this study indicate that combining both CTA and CTP procedures are not recommended in the stroke evaluation due to high radiation dose. Application of modified techniques in CTA (80 kV(p)) and CTP (30 s) is highly recommended in clinical practice for further radiation dose reduction.
    Matched MeSH terms: Brain/radiation effects
  3. Voon NS, Lau FN, Zakaria R, Md Rani SA, Ismail F, Manan HA, et al.
    Cancer Radiother, 2021 Feb;25(1):62-71.
    PMID: 33414057 DOI: 10.1016/j.canrad.2020.07.008
    PURPOSE: Nasopharyngeal carcinoma (NPC) radiotherapy (RT) irradiates parts of the brain which may cause cerebral tissue changes. This study aimed to systematically review the brain microstructure changes using MRI-based measures, diffusion tensor imaging (DTI), diffusion kurtosis imaging (DKI) and voxel-based morphometry (VBM) and the impact of dose and latency following RT.

    METHODS: PubMed and Scopus databases were searched based on PRISMA guideline to determine studies focusing on changes following NPC RT.

    RESULTS: Eleven studies fulfilled the inclusion criteria. Microstructural changes occur most consistently in the temporal region. The changes were correlated with latency in seven studies; fractional anisotropy (FA) and gray matter (GM) volume remained low even after a longer period following RT and areas beyond irradiation site with reduced FA and GM measures. For dosage, only one study showed correlation, thus requiring further investigations.

    CONCLUSION: DTI, DKI and VBM may be used as a surveillance tool in detecting brain microstructural changes of NPC patients which correlates to latency and brain areas following RT.

    Matched MeSH terms: Brain/radiation effects*
  4. Narayanan SN, Jetti R, Kesari KK, Kumar RS, Nayak SB, Bhat PG
    Environ Sci Pollut Res Int, 2019 Oct;26(30):30693-30710.
    PMID: 31463749 DOI: 10.1007/s11356-019-06278-5
    The primary objective of mobile phone technology is to achieve communication with any person at any place and time. In the modern era, it is impossible to ignore the usefulness of mobile phone technology in cases of emergency as many lives have been saved. However, the biological effects they may have on humans and other animals have been largely ignored and not been evaluated comprehensively. One of the reasons for this is the speedy uncontrollable growth of this technology which has surpassed our researching ability. Initiated with the first generation, the mobile telephony currently reaches to its fifth generation without being screened extensively for any biological effects that they may have on humans or on other animals. Mounting evidences suggest possible non-thermal biological effects of radiofrequency electromagnetic radiation (RF-EMR) on brain and behavior. Behavioral studies have particularly concentrated on the effects of RF-EMR on learning, memory, anxiety, and locomotion. The literature analysis on behavioral effects of RF-EMR demonstrates complex picture with conflicting observations. Nonetheless, numerous reports suggest a possible behavioral effect of RF-EMR. The scientific findings about this issue are presented in the current review. The possible neural and molecular mechanisms for the behavioral effects have been proposed in the light of available evidences from the literature.
    Matched MeSH terms: Brain/radiation effects*
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links