Displaying all 4 publications

Abstract:
Sort:
  1. Myint K, Jacobs K, Myint AM, Lam SK, Henden L, Hoe SZ, et al.
    PLoS One, 2021;16(6):e0252668.
    PMID: 34081742 DOI: 10.1371/journal.pone.0252668
    The effects of stress on the neuroendocrine, central nervous and immune systems are extremely complex. The kynurenine pathway (KP) of the tryptophan metabolism is recognised as a cross-link between the neuroendocrine- and immune systems. However, the effects of acute stress from everyday life on KP activation have not yet been studied. This study aims to investigate changes in the levels of the KP neuroactive metabolites and cytokines in response to stress triggered by academic examinations. Ninety-two healthy first year medical students benevolently participated in the study. Parameters were measured pre- examination, which is considered to be a high-stress period, and post-examination, as a low-stress period. Stress induced by academic examinations significantly increases the perceived stress scores (p<0.001), serum cortisol levels (p<0.001) and brain-derived neurotrophic factor (BDNF) levels (p<0.01). It decreased IL-10 levels (p<0.05) but had no effect on IL-6 and TNF-alpha levels. Only the KP neuroactive metabolite, 3-hydroxykynurenine (3-HK) significantly increased (p<0.01) in the post-examination period. In addition, the stress scores positively correlated with the levels of cortisol (r2 = 0.297, p<0.01) at post examination. Acute stress triggered by academic examinations increases cortisol and BDNF production and suppresses the anti-inflammatory cytokine, IL-10, but did not increase significantly the levels of other pro-inflammatory cytokines, tryptophan, kynurenine and downstream KP metabolites. The concomitant increased levels of BDNF under the duress of acute examination stress appear to limit the levels pro-inflammatory markers, which may attenuate the action of cortisol and the neuroinflammatory branch of the KP.
    Matched MeSH terms: Brain-Derived Neurotrophic Factor/blood
  2. Zhang B, Deng H, Ren J, Legrand FD, Ahmad Yusof H, Zhang R, et al.
    BMJ Open, 2024 Jun 26;14(6):e080315.
    PMID: 38926142 DOI: 10.1136/bmjopen-2023-080315
    BACKGROUND: The prevalence of major depressive disorder (MDD) is on the rise globally, and the use of antidepressant medications for its treatment does not usually result in full remission. However, the combination of physical exercise and psychotherapy for the treatment of MDD increase the rate of full remission among patients. This three-armed, parallel-group, double-blinded randomised controlled trial (RCT) aims to assess and compare the effects between the combination of exergame and acceptance and commitment therapy (e-ACT) programme, ACT only and treatment-as-usual (TAU) control groups on the severity of depression and anxiety symptoms, the degree of experiential avoidance and quality of life (QoL) and the serum levels of depression biomarkers (such as brain-derived neurotrophic factor, C-reactive protein and vascular endothelial growth factor) among patients with MDD across three time points.

    METHODS AND ANALYSIS: This RCT will recruit 126 patients with MDD who will be randomised using stratified permuted block randomisation into three groups, which are the combined e-ACT programme, ACT-only and TAU control groups in a 1:1:1 allocation ratio. The participants in the e-ACT and ACT-only intervention groups will undergo once a week intervention sessions for 8 weeks. Assessments will be carried out through three time points, such as the pre-intervention assessment (t0), assessment immediately after completion of the intervention at 8 weeks (t1) and assessment at 24 weeks after completion of the intervention (t2). During each assessment, the primary outcome to be assessed includes the severity of depression symptoms, while the secondary outcomes to be assessed are the severity of anxiety symptoms, experiential avoidance, QoL and depression biomarkers.

    ETHICS AND DISSEMINATION: Approval of this study was obtained from the Human Research Ethics Committee of Universiti Sains Malaysia (USM/JEPeM/PP/23050420). The findings of the study will be published in academic peer-reviewed journals.

    TRIAL REGISTRATION NUMBER: NCT05812001 (ClinicalTrials.gov). Registered on 12 April 2023.

    Matched MeSH terms: Brain-Derived Neurotrophic Factor/blood
  3. Hadjighassem M, Kamalidehghan B, Shekarriz N, Baseerat A, Molavi N, Mehrpour M, et al.
    Nutr J, 2015;14:20.
    PMID: 25889793 DOI: 10.1186/s12937-015-0012-5
    Dietary omega-6 and omega-3 fatty acids have remarkable impacts on the levels of DHA in the brain and retina. Low levels of DHA in plasma and blood hamper visual and neural development in children and cause dementia and cognitive decline in adults. The level of brain-derived neurotrophic factors (BDNF) changes with dietary omega-3 fatty acid intake. BDNF is known for its effects on promoting neurogenesis and neuronal survival.
    Matched MeSH terms: Brain-Derived Neurotrophic Factor/blood*
  4. Aldoghachi AF, Tor YS, Redzun SZ, Lokman KAB, Razaq NAA, Shahbudin AF, et al.
    PLoS One, 2019;14(1):e0211241.
    PMID: 30677092 DOI: 10.1371/journal.pone.0211241
    BACKGROUND: Brain-derived neurotrophic factor (BDNF) is a neurotrophin found in abundance in brain regions such as the hippocampus, cortex, cerebellum and basal forebrain. It has been associated with the risk of susceptibility to major depressive disorder (MDD). This study aimed to determine the association of three BDNF variants (rs6265, rs1048218 and rs1048220) with Malaysian MDD patients.

    METHODS: The correlation of these variants to the plasma BDNF level among Malaysian MDD patients was assessed. A total of 300 cases and 300 matched controls recruited from four public hospitals within the Klang Valley of Selangor State, Malaysia and matched for age, sex and ethnicity were screened for BDNF rs6265, rs1048218 and rs1048220 using high resolution melting (HRM).

    FINDINGS: BDNF rs1048218 and BDNF rs1048220 were monomorphic and were excluded from further analysis. The distribution of the alleles and genotypes for BDNF rs6265 was in Hardy-Weinberg equilibrium for the controls (p = 0.13) but was in Hardy Weinberg disequilibrium for the cases (p = 0.011). Findings from this study indicated that having BDNF rs6265 in the Malaysian population increase the odds of developing MDD by 2.05 folds (95% CI = 1.48-3.65). Plasma from 206 cases and 206 controls were randomly selected to measure the BDNF level using enzyme-linked immunosorbent assay (ELISA). A significant decrease in the plasma BDNF level of the cases as compared to controls (p<0.0001) was observed. However, there was no evidence of the effect of the rs6265 genotypes on the BDNF level indicating a possible role of other factors in modulating the BDNF level that warrants further investigation.

    CONCLUSION: The study indicated that having the BDNF rs6265 allele (A) increase the risk of developing MDD in the Malaysian population suggesting a possible role of BDNF in the etiology of the disorder.

    Matched MeSH terms: Brain-Derived Neurotrophic Factor/blood*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links