Displaying all 8 publications

Abstract:
Sort:
  1. Bamaiyi PH, Hassan L, Khairani-Bejo S, ZainalAbidin M, Ramlan M, Adzhar A, et al.
    Prev Vet Med, 2015 May 1;119(3-4):232-6.
    PMID: 25746928 DOI: 10.1016/j.prevetmed.2015.02.001
    A study was conducted to describe the prevalence and distribution of zoonotic Brucella melitensis in goats in Peninsular Malaysia. Using serosurveillance data of the last decade (2000-2009) involving 119,799 goats and 3555 farms, the seroprevalence of brucellosis among goats was 0.91% (95% CI=0.86-0.96) and among farms was 7.09% (95% CI=6.27-7.98). The odds of brucellosis was significantly (P<0.05) higher in the later part of the decade, in larger herd size and among the states located in the peninsula as compared to eastern Malaysia. The infection was detected throughout Malaysia but at generally low seroprevalences with states like Perlis that border neighbouring countries having higher seroprevalence of brucellosis than other non-border states.
    Matched MeSH terms: Brucella melitensis/isolation & purification*
  2. Onilude OM, Mohd Yusoff S, Emikpe BO, Tanko P, Shahrom SM, Effendy M
    J Immunoassay Immunochem, 2017;38(1):82-99.
    PMID: 27494045 DOI: 10.1080/15321819.2016.1220395
    Early and accurate diagnosis of Brucella melitensis is essential for the treatment and control of brucellosis both in animals and humans. The thrust for the development of a rapid diagnostic technique to overcome the limitations of conventional microbiological and serological tests brought about this investigation on the development and application of dot-ELISA for antigen and antibody detection in infected goats. Fifteen apparently healthy Boer aged 2-3 years which tested negative for brucellosis using PCR and ELISA, were grouped into A (10 goats infected intraocularly with 10(7) CFU of B. melitensis) and B (5 goats) as control. Discharges (ocular, nasal, and vaginal) and blood were collected at days 3, 7, 10, 14, weekly until 42 post-infection (pi) for dot-ELISA, PCR, and RBPT. Dot-ELISA detected B. melitensis antigen and antibody in group A at day 3 and 7 pi, respectively with adequate sensitivity and specificity relative to PCR and RBPT. The bacteria shedding detected from discharges at day 3 pi in the nasal and ocular route with dot-ELISA. Group B were consistently negative. Values such as speed, simplicity, field adaptability, high sensitivity, and specificity make dot-ELISA a rapid and adequate technique for diagnosis of brucellosis in B. melitensis infected goats within few hours.
    Matched MeSH terms: Brucella melitensis/isolation & purification*
  3. Sam IC, Karunakaran R, Kamarulzaman A, Ponnampalavanar S, Syed Omar SF, Ng KP, et al.
    J Hosp Infect, 2012 Apr;80(4):321-5.
    PMID: 22237130 DOI: 10.1016/j.jhin.2011.12.004
    Brucella species are easily transmitted by aerosols and can be acquired in the laboratory.
    Matched MeSH terms: Brucella melitensis/isolation & purification*
  4. Ahmed IM, Khairani-Bejo S, Hassan L, Bahaman AR, Omar AR
    BMC Vet Res, 2015;11:275.
    PMID: 26530141 DOI: 10.1186/s12917-015-0587-2
    Brucella melitensis is the most important pathogenic species of Brucella spp. which affects goats and sheep and causes caprine and ovine brucellosis, respectively. Serological tests for diagnosis of brucellosis such as Rose Bengal plate test (RBPT) and enzyme-linked immunosorbent assay (ELISA) usually utilize smooth lipopolysaccharides (S-LPS) as a diagnostic antigen which could give false positive serological reactions. Outer membrane proteins (OMP) of B. melitensis have been used as alternative diagnostic antigens rather than S-LPS for differential serological diagnosis of brucellosis, mainly in ELISA with single recombinant OMP (rOMP) as a diagnostic antigen. Nevertheless, the use of single format mainly showed lack of sensitivity against the desired rOMP. Therefore, this study aimed to determine whether a newly developed rOMPs indirect ELISA (rOMPs I-ELISA), based on combination of rOMP25, rOMP28 and rOMP31of B. melitensis, has a potential benefit for use in the serodiagnosis of brucellosis.
    Matched MeSH terms: Brucella melitensis/isolation & purification*
  5. Mohamed Zahidi J, Bee Yong T, Hashim R, Mohd Noor A, Hamzah SH, Ahmad N
    Diagn Microbiol Infect Dis, 2015 Apr;81(4):227-33.
    PMID: 25641125 DOI: 10.1016/j.diagmicrobio.2014.12.012
    Molecular approaches have been investigated to overcome difficulties in identification and differentiation of Brucella spp. using conventional phenotypic methods. In this study, high-resolution melt (HRM) analysis was used for rapid identification and differentiation of members of Brucella genus. A total of 41 Brucella spp. isolates from human brucellosis were subjected to HRM analysis using 4 sets of primers, which identified 40 isolates as Brucella melitensis and 1 as Brucella canis. The technique utilized low DNA concentration and was highly reproducible. The assay is shown to be a useful diagnostic tool, which can rapidly differentiate Brucella up to species level.
    Matched MeSH terms: Brucella melitensis/isolation & purification*
  6. Tay BY, Ahmad N, Hashim R, Mohamed Zahidi J, Thong KL, Koh XP, et al.
    BMC Infect Dis, 2015;15:220.
    PMID: 26033227 DOI: 10.1186/s12879-015-0958-0
    Brucellosis is one of the most common zoonotic diseases worldwide. It can cause acute febrile illness in human and is a major health problem. Studies in human brucellosis in Malaysia is limited and so far no genotyping studies has been done on Brucella isolates. The aim of the study was to determine the genetic diversity among Brucella species isolated from human brucellosis, obtained over a 6-year period (2009-2014).
    Matched MeSH terms: Brucella melitensis/isolation & purification
  7. Bamaiyi PH, Hassan L, Khairani-Bejo S, Zainal Abidin M, Ramlan M, Krishnan N, et al.
    Trop Biomed, 2012 Dec;29(4):513-8.
    PMID: 23202595
    A study was carried out to isolate Brucella melitensis using established bacteriological and PCR techniques in Brucella seropositive goats in farms in Selangor, Negeri Sembilan, Melaka and Pulau Pinang. Brucella melitensis was isolated from 7 of 134 reactors with the highest isolation from the vaginal swabs (57.14%) followed by the spleen (28.57%), uterine fluid (14.29%). No Brucella was isolated from the lymph nodes. PCR confirmed all the seven isolates as B. melitensis and isolates were phylogenetically related to other isolates from India, Iran, and Israel but most closely related to isolates from Singapore.
    Matched MeSH terms: Brucella melitensis/isolation & purification*
  8. Tanko P, Mohd Yusoff S, Emikpe BO, Onilude OM, Abdullateef A
    J Immunoassay Immunochem, 2021 May 04;42(3):265-284.
    PMID: 33577382 DOI: 10.1080/15321819.2020.1862862
    This study investigated dexamethasone-treatment, shedding routes, tissue antigen distribution, and pathology of caprine Brucellosis. Eighteen non-pregnant goats were randomly grouped into A, B, and C. Group A was administered dexamethasone for 7 days at 2 mg/kg before inoculating 0.5 mL B. melitensis at 107 CFU ocularly while group B was inoculated 0.5 mL B. melitensis only, and C as control negative. Blood samples, ocular, nasal, and vaginal swabs were obtained for evaluation. Three goats were sacrificed from each group at days 21 and 42 post-inoculation (pi) and selected tissues collected for PCR, histopathology, and immunohistochemistry. Brucella melitensis was detected in the ocular swabs of group A significantly higher than group B. Shedding was prolonged in group A compared to B. The overall shedding was 22.2% in group A and 9.4% in group B. The uterus of both groups A and B revealed mild inflammation and microgranuloma, extensive necrotic lesions in lymph nodes. Liver showed multifocal necrosis predominantly in group A. Lesion scoring showed significantly higher scores in A compared to B. Strong immunostaining was observed in the liver, lungs, and spleen, predominantly at day 21 pi. This study demonstrated dexamethasone prolonged shedding, tissue antigen distribution, and pathology in dexamethasone-treated goats.
    Matched MeSH terms: Brucella melitensis/isolation & purification
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links