Displaying all 3 publications

Abstract:
Sort:
  1. Mariappan V, Vellasamy KM, Hashim OH, Vadivelu J
    PLoS One, 2011;6(10):e26518.
    PMID: 22046299 DOI: 10.1371/journal.pone.0026518
    Burkholderia cepacia is a Gram-negative pathogen that causes serious respiratory infections in immunocompromised patients and individuals with cystic fibrosis. This bacterium is known to release extracellular proteins that may be involved in virulence.
    Matched MeSH terms: Burkholderia cepacia/growth & development*
  2. Show PL, Tan CP, Shamsul Anuar M, Ariff A, Yusof YA, Chen SK, et al.
    Bioresour Technol, 2012 Jul;116:226-33.
    PMID: 22061444 DOI: 10.1016/j.biortech.2011.09.131
    An extractive fermentation technique was developed using a thermoseparating reagent to form a two-phase system for simultaneous cell cultivation and downstream processing of extracellular Burkholderia cepacia lipase. A 10% (w/w) solution of ethylene oxide-propylene oxide (EOPO) with a molecular mass of 3900 g/mol and pH 8.5, a 200 rpm speed, and 30 °C were selected as the optimal conditions for lipase production (55 U/ml). Repetitive batch fermentation was performed by continuous replacement of the top phase every 24h, which resulted in an average cell growth mass of 4.7 g/L for 10 extractive batches over 240 h. In scaling-up the process, a bench-scale bioreactor was tested under the conditions that had been optimized in flasks. The production rate and recovery yield were higher in the bioreactor compared to fermentation performed in flasks.
    Matched MeSH terms: Burkholderia cepacia/growth & development
  3. Ganesh PS, Vishnupriya S, Vadivelu J, Mariappan V, Vellasamy KM, Shankar EM
    Microbiol. Immunol., 2020 Feb;64(2):87-98.
    PMID: 31769530 DOI: 10.1111/1348-0421.12762
    Burkholderia cepacia complex (Bcc) are opportunistic pathogens implicated with nosocomial infections, and high rates of morbidity and mortality, especially in individuals with cystic fibrosis (CF). B. cepacia are naturally resistant to different classes of antibiotics, and can subvert the host innate immune responses by producing quorum sensing (QS) controlled virulence factors and biofilms. It still remains a conundrum as to how exactly the bacterium survives the intracellular environment within the host cells of CF patients and immunocompromised individuals although the bacterium can invade human lung epithelial cells, neutrophils, and murine macrophages. The mechanisms associated with intracellular survival in the airway epithelial cells and the role of QS and virulence factors in B. cepacia infections in cystic fibrosis remain largely unclear. The current review focuses on understanding the role of QS-controlled virulence factors and biofilms, and provides additional impetus to understanding the potentials of QS-inhibitory strategies against B. cepacia.
    Matched MeSH terms: Burkholderia cepacia/growth & development
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links