OBJECTIVE: This study aimed to determine the effectiveness of annatto-tocotrienol on the bone turnover markers and bone histomorphometry in a model of male osteoporosis induced by buserelin (a GnRH agonist).
METHODS: Forty-six three-months-old male Sprague-Dawley rats (three months old; 300-350 g) were randomly divided into six groups. The baseline control group (n = 6) was sacrificed at the onset of the study. The normal control group (n = 8) received corn oil (the vehicle of tocotrienol) orally daily and normal saline (the vehicle of buserelin) subcutaneously daily. The buserelin control (n = 8) received corn oil orally daily and subcutaneous buserelin injection 75 μg/kg/day daily. The calcium control (n = 8) received 1% calcium in drinking water and subcutaneous buserelin injection 75 μg/kg/day. The remaining rats were treated with two different treatments, i.e., (1) oral annatto tocotrienol at 60 mg/kg/day plus subcutaneous buserelin injection 75 μg/kg/day (n = 8); (2) oral annatto tocotrienol at 100 mg/kg/day plus subcutaneous buserelin injection 75 μg/kg/day (n = 8). The rats were injected with calcein twice before being sacrificed to label the bones. The rats were euthanized, and their blood and right femur were harvested at the end of the treatment for bone turnover markers and bone histomorphometry examination.
RESULTS: Both serum osteocalcin and C-telopeptide of type 1 collagen were not significantly different between treated groups and buserelin control (P > 0.05). The buserelin control group had a significantly lower bone volume and higher eroded surface compared with the normal control group (P
OBJECTIVE: This study evaluated the associations of plasma carotenoid, retinol, tocopherol, and vitamin C concentrations and risk of breast cancer.
DESIGN: In a nested case-control study within the European Prospective Investigation into Cancer and Nutrition cohort, 1502 female incident breast cancer cases were included, with an oversampling of premenopausal (n = 582) and estrogen receptor-negative (ER-) cases (n = 462). Controls (n = 1502) were individually matched to cases by using incidence density sampling. Prediagnostic samples were analyzed for α-carotene, β-carotene, lycopene, lutein, zeaxanthin, β-cryptoxanthin, retinol, α-tocopherol, γ-tocopherol, and vitamin C. Breast cancer risk was computed according to hormone receptor status and age at diagnosis (proxy for menopausal status) by using conditional logistic regression and was further stratified by smoking status, alcohol consumption, and body mass index (BMI). All statistical tests were 2-sided.
RESULTS: In quintile 5 compared with quintile 1, α-carotene (OR: 0.61; 95% CI: 0.39, 0.98) and β-carotene (OR: 0.41; 95% CI: 0.26, 0.65) were inversely associated with risk of ER- breast tumors. The other analytes were not statistically associated with ER- breast cancer. For estrogen receptor-positive (ER+) tumors, no statistically significant associations were found. The test for heterogeneity between ER- and ER+ tumors was statistically significant only for β-carotene (P-heterogeneity = 0.03). A higher risk of breast cancer was found for retinol in relation to ER-/progesterone receptor-negative tumors (OR: 2.37; 95% CI: 1.20, 4.67; P-heterogeneity with ER+/progesterone receptor positive = 0.06). We observed no statistically significant interaction between smoking, alcohol, or BMI and all investigated plasma analytes (based on tertile distribution).
CONCLUSION: Our results indicate that higher concentrations of plasma β-carotene and α-carotene are associated with lower breast cancer risk of ER- tumors.