Displaying all 7 publications

Abstract:
Sort:
  1. Chandrasekharan N
    Med J Malaysia, 1992 Jun;47(2):93-7.
    PMID: 1494339
    Matched MeSH terms: Carotenoids/therapeutic use
  2. Tan BL, Norhaizan ME
    Molecules, 2019 May 09;24(9).
    PMID: 31075966 DOI: 10.3390/molecules24091801
    Despite an increase in life expectancy that indicates positive human development, a new challenge is arising. Aging is positively associated with biological and cognitive degeneration, for instance cognitive decline, psychological impairment, and physical frailty. The elderly population is prone to oxidative stress due to the inefficiency of their endogenous antioxidant systems. As many studies showed an inverse relationship between carotenoids and age-related diseases (ARD) by reducing oxidative stress through interrupting the propagation of free radicals, carotenoid has been foreseen as a potential intervention for age-associated pathologies. Therefore, the role of carotenoids that counteract oxidative stress and promote healthy aging is worthy of further discussion. In this review, we discussed the underlying mechanisms of carotenoids involved in the prevention of ARD. Collectively, understanding the role of carotenoids in ARD would provide insights into a potential intervention that may affect the aging process, and subsequently promote healthy longevity.
    Matched MeSH terms: Carotenoids/therapeutic use*
  3. Nesaretnam K, Sies H
    Antioxid Redox Signal, 2006 10 13;8(11-12):2175-7.
    PMID: 17034360
    The 6(th) COSTAM/SFRR (ASEAN/Malaysia) workshop, "Micronutrients, Oxidative Stress, and the Environment," was held from June 29 to July 2 at Holiday Inn Damai Beach Resort in Kuching, Sarawak. Two hundred twenty participants from 17 countries presented recent advances on natural antioxidants in the area of oxidative stress and molecular aspects of nutrition. Natural products and research are an important program in academic institutions and are experiencing unprecedented interest and growth by the scientific community and public health authorities. Progress is being driven by better understanding of the molecular mechanisms of the relation between oxidative stress and micronutrient action. The gathering of scientists from around the world was fruitful, and we hope that future work will be developed by the formal and informal interactions that took place in this beautiful tropical setting.
    Matched MeSH terms: Carotenoids/therapeutic use
  4. Mohamad NV, Soelaiman IN, Chin KY
    Biomed Pharmacother, 2018 Jul;103:453-462.
    PMID: 29674281 DOI: 10.1016/j.biopha.2018.04.083
    INTRODUCTION: Osteoporosis is a debilitating skeletal side effect of androgen deprivation therapy based on gonadotropin-releasing hormone (GnRH) agonist in men. Tocotrienol from Bixa orellana (annatto) has been demonstrated to offer protection against osteoporosis by exerting anabolic effects on bone. Thus, it may prevent osteoporosis among GnRH agonist users.

    OBJECTIVE: This study aimed to determine the effectiveness of annatto-tocotrienol on the bone turnover markers and bone histomorphometry in a model of male osteoporosis induced by buserelin (a GnRH agonist).

    METHODS: Forty-six three-months-old male Sprague-Dawley rats (three months old; 300-350 g) were randomly divided into six groups. The baseline control group (n = 6) was sacrificed at the onset of the study. The normal control group (n = 8) received corn oil (the vehicle of tocotrienol) orally daily and normal saline (the vehicle of buserelin) subcutaneously daily. The buserelin control (n = 8) received corn oil orally daily and subcutaneous buserelin injection 75 μg/kg/day daily. The calcium control (n = 8) received 1% calcium in drinking water and subcutaneous buserelin injection 75 μg/kg/day. The remaining rats were treated with two different treatments, i.e., (1) oral annatto tocotrienol at 60 mg/kg/day plus subcutaneous buserelin injection 75 μg/kg/day (n = 8); (2) oral annatto tocotrienol at 100 mg/kg/day plus subcutaneous buserelin injection 75 μg/kg/day (n = 8). The rats were injected with calcein twice before being sacrificed to label the bones. The rats were euthanized, and their blood and right femur were harvested at the end of the treatment for bone turnover markers and bone histomorphometry examination.

    RESULTS: Both serum osteocalcin and C-telopeptide of type 1 collagen were not significantly different between treated groups and buserelin control (P > 0.05). The buserelin control group had a significantly lower bone volume and higher eroded surface compared with the normal control group (P 

    Matched MeSH terms: Carotenoids/therapeutic use*
  5. Mohamad NV, Ima-Nirwana S, Chin KY
    Biomed Pharmacother, 2021 May;137:111368.
    PMID: 33582449 DOI: 10.1016/j.biopha.2021.111368
    Tocotrienol has been shown to prevent bone loss in animal models of postmenopausal osteoporosis, but the low oral bioavailability might limit its use. A self-emulsifying drug delivery system (SEDDS) could increase the bioavailability of tocotrienol. However, evidence of this system in improving the skeletal effects of tocotrienol is scanty. This study aims to evaluate the therapeutic efficacy of annatto tocotrienol with SEDDS in a rat model of postmenopausal bone loss. Ten-month-old female Sprague Dawley rats were randomized into six groups. The baseline group was euthanatized at the onset of the study. Four other groups underwent ovariectomy to induce estrogen deficiency. The sham underwent similar surgery procedure, but their ovaries were retained. Eight weeks after surgery, the ovariectomized rats received one of the four different regimens orally daily: (a) SEDDS, (b) annatto tocotrienol [60 mg/kg body weight (b.w.)] without SEDDS, (c) annatto-tocotrienol (60 mg/kg b.w.) with SEDDS, (d) raloxifene (1 mg/kg b.w.). After eight weeks of treatment, blood was collected for the measurement of delta-tocotrienol level and oxidative stress markers. The rats were euthanized and their bones were harvested for the evaluation of the bone microstructure, calcium content and strength. Circulating delta-tocotrienol level was significantly higher in rats receiving annatto tocotrienol with SEDDS compared to the group receiving unformulated annatto-tocotrienol (p 
    Matched MeSH terms: Carotenoids/therapeutic use*
  6. Wong SK, Chin KY, Suhaimi FH, Ahmad F, Ima-Nirwana S
    Bone, 2018 11;116:8-21.
    PMID: 29990585 DOI: 10.1016/j.bone.2018.07.003
    Metabolic syndrome (MetS) is associated with osteoporosis due to the underlying inflammatory and hormonal changes. Annatto tocotrienol has been shown to improve medical complications associated with MetS or bone loss in animal studies. This study aimed to investigate the effects of annatto tocotrienol as a single treatment for MetS and osteoporosis in high-carbohydrate high-fat (HCHF) diet-induced MetS animals. Three-month-old male Wistar rats were randomly divided into five groups. The baseline group was euthanized at the onset of the study. The normal group received standard rat chow and tap water. The remaining groups received HCHF diet and treated with three different regimens orally daily: (a) tocopherol-stripped corn oil (the vehicle of tocotrienol), (b) 60 mg/kg annatto tocotrienol, and (c) 100 mg/kg annatto tocotrienol. At the end of the study, measurements of MetS parameters, body compositions, and bone mineral density were performed in animals before sacrifice. Upon euthanasia, blood and femur of the rats were harvested for the evaluations of bone microstructure, biomechanical strength, remodelling activities, hormonal changes, and inflammatory response. Treatment with annatto tocotrienol improved all MetS parameters (except abdominal obesity), trabecular bone microstructure, bone strength, increased osteoclast number, normalized hormonal changes and inflammatory response in the HCHF animals. In conclusion, annatto tocotrienol is a potential agent for managing MetS and osteoporosis concurrently. The beneficial effects of annatto tocotrienol may be attributed to its ability to prevent the hormonal changes and pro-inflammatory state in animals with MetS.
    Matched MeSH terms: Carotenoids/therapeutic use
  7. Bakker MF, Peeters PH, Klaasen VM, Bueno-de-Mesquita HB, Jansen EH, Ros MM, et al.
    Am J Clin Nutr, 2016 Feb;103(2):454-64.
    PMID: 26791185 DOI: 10.3945/ajcn.114.101659
    BACKGROUND: Carotenoids and vitamin C are thought to be associated with reduced cancer risk because of their antioxidative capacity.

    OBJECTIVE: This study evaluated the associations of plasma carotenoid, retinol, tocopherol, and vitamin C concentrations and risk of breast cancer.

    DESIGN: In a nested case-control study within the European Prospective Investigation into Cancer and Nutrition cohort, 1502 female incident breast cancer cases were included, with an oversampling of premenopausal (n = 582) and estrogen receptor-negative (ER-) cases (n = 462). Controls (n = 1502) were individually matched to cases by using incidence density sampling. Prediagnostic samples were analyzed for α-carotene, β-carotene, lycopene, lutein, zeaxanthin, β-cryptoxanthin, retinol, α-tocopherol, γ-tocopherol, and vitamin C. Breast cancer risk was computed according to hormone receptor status and age at diagnosis (proxy for menopausal status) by using conditional logistic regression and was further stratified by smoking status, alcohol consumption, and body mass index (BMI). All statistical tests were 2-sided.

    RESULTS: In quintile 5 compared with quintile 1, α-carotene (OR: 0.61; 95% CI: 0.39, 0.98) and β-carotene (OR: 0.41; 95% CI: 0.26, 0.65) were inversely associated with risk of ER- breast tumors. The other analytes were not statistically associated with ER- breast cancer. For estrogen receptor-positive (ER+) tumors, no statistically significant associations were found. The test for heterogeneity between ER- and ER+ tumors was statistically significant only for β-carotene (P-heterogeneity = 0.03). A higher risk of breast cancer was found for retinol in relation to ER-/progesterone receptor-negative tumors (OR: 2.37; 95% CI: 1.20, 4.67; P-heterogeneity with ER+/progesterone receptor positive = 0.06). We observed no statistically significant interaction between smoking, alcohol, or BMI and all investigated plasma analytes (based on tertile distribution).

    CONCLUSION: Our results indicate that higher concentrations of plasma β-carotene and α-carotene are associated with lower breast cancer risk of ER- tumors.

    Matched MeSH terms: Carotenoids/therapeutic use
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links