Displaying all 3 publications

Abstract:
Sort:
  1. Yousefi AM, Hoque ME, Prasad RG, Uth N
    J Biomed Mater Res A, 2015 Jul;103(7):2460-81.
    PMID: 25345589 DOI: 10.1002/jbm.a.35356
    The repair of osteochondral defects requires a tissue engineering approach that aims at mimicking the physiological properties and structure of two different tissues (cartilage and bone) using specifically designed scaffold-cell constructs. Biphasic and triphasic approaches utilize two or three different architectures, materials, or composites to produce a multilayered construct. This article gives an overview of some of the current strategies in multiphasic/gradient-based scaffold architectures and compositions for tissue engineering of osteochondral defects. In addition, the application of finite element analysis (FEA) in scaffold design and simulation of in vitro and in vivo cell growth outcomes has been briefly covered. FEA-based approaches can potentially be coupled with computer-assisted fabrication systems for controlled deposition and additive manufacturing of the simulated patterns. Finally, a summary of the existing challenges associated with the repair of osteochondral defects as well as some recommendations for future directions have been brought up in the concluding section of this article.
    Matched MeSH terms: Cartilage Diseases/therapy*
  2. Munirah S, Samsudin OC, Chen HC, Salmah SH, Aminuddin BS, Ruszymah BH
    Med J Malaysia, 2008 Jul;63 Suppl A:35-6.
    PMID: 19024971
    Chondrocytes were isolated from articular cartilage biopsy and were cultivated in vitro. Approximately 30 million of cultured chondrocytes per ml were incorporated with autologous plasma-derived fibrin to form three-dimensional construct. Full-thickness punch hole defects were created in lateral and medial femoral condyles. The defects were implanted either with the autologous 'chondrocytes-fibrin' construct (ACFC), autologous chondrocytes (ACI) or fibrin blank (AF). Sheep were euthanized after 12 weeks. The gross morphology of all defects treated with ACFC implantation, ACI and AF exhibited median scores which correspond to a nearly normal appearance according to the International Cartilage Repair Society (ICRS) classification. ACFC significantly enhanced cartilage repair compared to ACI and AF in accordance with the modified O'Driscoll histological scoring scale. The relative sulphated glycosaminoglycans content (%) was significantly higher (p < 0.05) in ACFC when compared to control groups; ACI vs. fibrin only vs. untreated (blank). Results showed that ACFC implantation exhibited superior cartilage-like tissue regeneration compared to ACI. If the result is applicable to the human, it possibly will improve the existing treatment approaches for cartilage restoration in orthopaedic surgery.
    Matched MeSH terms: Cartilage Diseases/therapy*
  3. Samsudin EZ, Kamarul T
    Knee Surg Sports Traumatol Arthrosc, 2016 Dec;24(12):3912-3926.
    PMID: 26003481
    PURPOSE: This paper aims to review the current evidence for autologous chondrocyte implantation (ACI) generations relative to other treatment modalities, different cell delivery methods and different cell source application.

    METHODS: Literature search was performed to identify all level I and II studies reporting the clinical and structural outcome of any ACI generation in human knees using the following medical electronic databases: PubMed, EMBASE, Cochrane Library, CINAHL, SPORTDiscus and NICE healthcare database. The level of evidence, sample size calculation and risk of bias were determined for all included studies to enable quality assessment.

    RESULTS: Twenty studies were included in the analysis, reporting on a total of 1094 patients. Of the 20 studies, 13 compared ACI with other treatment modalities, seven compared different ACI cell delivery methods, and one compared different cell source for implantation. Studies included were heterogeneous in baseline design, preventing meta-analysis. Data showed a trend towards similar outcomes when comparing ACI generations with other repair techniques and when comparing different cell delivery methods and cell source selection. Majority of the studies (80 %) were level II evidence, and overall the quality of studies can be rated as average to low, with the absence of power analysis in 65 % studies.

    CONCLUSION: At present, there are insufficient data to conclude any superiority of ACI techniques. Considering its two-stage operation and cost, it may be appropriate to reserve ACI for patients with larger defects or those who have had inadequate response to other repair procedures until hard evidence enables specific clinical recommendations be made.

    LEVEL OF EVIDENCE: II.

    Matched MeSH terms: Cartilage Diseases/therapy*
Filters
Contact Us

Please provide feedback to Administrator (tengcl@gmail.com)

External Links