Displaying all 8 publications

Abstract:
Sort:
  1. Annuar N, Spier RE
    Med J Malaysia, 2004 May;59 Suppl B:204-5.
    PMID: 15468889
    Selections of collagen available commercially were tested for their biocompatibility as scaffold to promote cell growth in vitro via simple collagen fast test and cultivation of mammalian cells on the selected type of collagen. It was found that collagen type C9791 promotes the highest degree of aggregation as well as cells growth. This preliminary study also indicated potential use of collagen as scaffold in engineered tissue.
    Matched MeSH terms: Cell Aggregation/physiology*
  2. Arzmi MH, Dashper S, Catmull D, Cirillo N, Reynolds EC, McCullough M
    FEMS Yeast Res., 2015 Aug;15(5):fov038.
    PMID: 26054855 DOI: 10.1093/femsyr/fov038
    Microbial interactions are necessarily associated with the development of polymicrobial oral biofilms. The objective of this study was to determine the coaggregation of eight strains of Candida albicans with Actinomyces naeslundii and Streptococcus mutans. In autoaggregation assays, C. albicans strains were grown in RPMI-1640 and artificial saliva medium (ASM) whereas bacteria were grown in heart infusion broth. C. albicans, A. naeslundii and S. mutans were suspended to give 10(6), 10(7) and 10(8) cells mL(-1) respectively, in coaggregation buffer followed by a 1 h incubation. The absorbance difference at 620 nm (ΔAbs) between 0 h and 1 h was recorded. To study coaggregation, the same protocol was used, except combinations of microorganisms were incubated together. The mean ΔAbs% of autoaggregation of the majority of RPMI-1640-grown C. albicans was higher than in ASM grown. Coaggregation of C. albicans with A. naeslundii and/or S. mutans was variable among C. albicans strains. Scanning electron microscopy images showed that A. naeslundii and S. mutans coaggregated with C. albicans in dual- and triculture. In conclusion, the coaggregation of C. albicans, A. naeslundii and S. mutans is C. albicans strain dependent.
    Matched MeSH terms: Cell Aggregation/physiology*
  3. Alfaqeh H, Chua KH, Aminuddin BS, Ruszymah BH
    Med J Malaysia, 2008 Jul;63 Suppl A:119-20.
    PMID: 19025014
    This study aimed to compare the effects of three different media on the in vivo chondrogenesis of sheep bone marrow stem cells (BMSC). Sheep BMSC were cultured in F12:DMEM + 10% FBS, chondrogenic medium containing 5ng/ml TGF,3 + 50ng/ml IGF-1 and UKM-MECC for three weeks. The cultured cells were then harvested for construct formation with fibrin. Constructed tissues were implanted subcutaneously into nude mice for in vivo development. Cell aggregates were formed in both chondrogenic medium and UKM-MECC demonstrated the early chondrogenesis process. After five weeks of in vivo development, both chondrogenic medium and UKM-MECC promoted cartilage matrix synthesis confirmed by Safranin O staining.
    Matched MeSH terms: Cell Aggregation
  4. Tan JJ, Guyette JP, Miki K, Xiao L, Kaur G, Wu T, et al.
    Nat Commun, 2021 08 17;12(1):4997.
    PMID: 34404774 DOI: 10.1038/s41467-021-24921-z
    Epicardial formation is necessary for normal myocardial morphogenesis. Here, we show that differentiating hiPSC-derived lateral plate mesoderm with BMP4, RA and VEGF (BVR) can generate a premature form of epicardial cells (termed pre-epicardial cells, PECs) expressing WT1, TBX18, SEMA3D, and SCX within 7 days. BVR stimulation after Wnt inhibition of LPM demonstrates co-differentiation and spatial organization of PECs and cardiomyocytes (CMs) in a single 2D culture. Co-culture consolidates CMs into dense aggregates, which then form a connected beating syncytium with enhanced contractility and calcium handling; while PECs become more mature with significant upregulation of UPK1B, ITGA4, and ALDH1A2 expressions. Our study also demonstrates that PECs secrete IGF2 and stimulate CM proliferation in co-culture. Three-dimensional PEC-CM spheroid co-cultures form outer smooth muscle cell layers on cardiac micro-tissues with organized internal luminal structures. These characteristics suggest PECs could play a key role in enhancing tissue organization within engineered cardiac constructs in vitro.
    Matched MeSH terms: Cell Aggregation/physiology*
  5. Pushparajah V, Fatima A, Chong CH, Gambule TZ, Chan CJ, Ng ST, et al.
    Sci Rep, 2016 07 27;6:30010.
    PMID: 27460640 DOI: 10.1038/srep30010
    Lignosus rhinocerotis (Tiger milk mushroom) is an important folk medicine for indigenous peoples in Southeast Asia. We previously reported its de novo assembled 34.3 Mb genome encoding a repertoire of proteins including a putative bioactive fungal immunomodulatory protein. Here we report the cDNA of this new member (FIP-Lrh) with a homology range of 54-64% to FIPs from other mushroom species, the closest is with FIP-glu (LZ-8) (64%) from Ganoderma lucidum. The FIP-Lrh of 112 amino acids (12.59 kDa) has a relatively hydrophobic N-terminal. Its predicted 3-dimensional model has identical folding patterns to FIP-fve and contains a partially conserved and more positively charged carbohydrates binding pocket. Docking predictions of FIP-Lrh on 14 glycans commonly found on cellular surfaces showed the best binding energy of -3.98 kcal/mol to N-acetylgalactosamine and N-acetylglucosamine. Overexpression of a 14.9 kDa soluble 6xHisFIP-Lrh was achieved in pET-28a(+)/BL21 and the purified recombinant protein was sequence verified by LC-MS/MS (QTOF) analysis. The ability to haemagglutinate both mouse and human blood at concentration ≥0.34 μM, further demonstrated its lectin nature. In addition, the cytotoxic effect of 6xHisFIP-Lrh on MCF-7, HeLa and A549 cancer cell lines was detected at IC50 of 0.34 μM, 0.58 μM and 0.60 μM, respectively.
    Matched MeSH terms: Cell Aggregation/physiology
  6. Govindasamy V, Ronald VS, Abdullah AN, Nathan KR, Ab Aziz ZA, Abdullah M, et al.
    J Dent Res, 2011 May;90(5):646-52.
    PMID: 21335539 DOI: 10.1177/0022034510396879
    The post-natal dental pulp tissue contains a population of multipotent mesenchymal progenitor cells known as dental pulp stromal/stem cells (DPSCs), with high proliferative potential for self-renewal. In this investigation, we explored the potential of DPSCs to differentiate into pancreatic cell lineage resembling islet-like cell aggregates (ICAs). We isolated, propagated, and characterized DPSCs and demonstrated that these could be differentiated into adipogenic, chondrogenic, and osteogenic lineage upon exposure to an appropriate cocktail of differentiating agents. Using a three-step protocol reported previously by our group, we succeeded in obtaining ICAs from DPSCs. The identity of ICAs was confirmed as islets by dithiozone-positive staining, as well as by expression of C-peptide, Pdx-1, Pax4, Pax6, Ngn3, and Isl-1. There were several-fold up-regulations of these transcription factors proportional to days of differentiation as compared with undifferentiated DPSCs. Day 10 ICAs released insulin and C-peptide in a glucose-dependent manner, exhibiting in vitro functionality. Our results demonstrated for the first time that DPSCs could be differentiated into pancreatic cell lineage and offer an unconventional and non-controversial source of human tissue that could be used for autologous stem cell therapy in diabetes.
    Matched MeSH terms: Cell Aggregation
  7. Ng AM, Westerman K, Kojima K, Kodoma S, Aminuddin BS, Ruszymah BH, et al.
    Med J Malaysia, 2008 Jul;63 Suppl A:7-8.
    PMID: 19024958
    Nerve stem cells have a unique characteristic in that they form spherical aggregates, also termed neurospheres, in vitro. The study demonstrated the successful derivation of these neurospheres from bone marrow culture. Their plasticity as nerve stem cells was confirmed. The findings further strengthens the pluripotency of cell populations within the bone marrow.
    Matched MeSH terms: Cell Aggregation
  8. Alitheen NB, McClure SJ, Yeap SK, Kristeen-Teo YW, Tan SW, McCullagh P
    PLoS One, 2012;7(11):e49188.
    PMID: 23185307 DOI: 10.1371/journal.pone.0049188
    The bursa of Fabricius is critical for B cell development and differentiation in chick embryos. This study describes the production in vitro, from dissociated cell suspensions, of cellular agglomerates with functional similarities to the chicken bursa. Co-cultivation of epithelial and lymphoid cells obtained from embryos at the appropriate developmental stage regularly led to agglomerate formation within 48 hours. These agglomerates resembled bursal tissue in having lymphoid clusters overlaid by well organized epithelium. Whereas lymphocytes within agglomerates were predominantly Bu-1a(+), a majority of those emigrating onto the supporting membrane were Bu-1a(-) and IgM(+). Both agglomerates and emigrant cells expressed activation-induced deaminase with levels increasing after 24 hours. Emigrating cells were actively proliferating at a rate in excess of both the starting cell population and the population of cells remaining in agglomerates. The potential usefulness of this system for investigating the response of bursal tissue to avian Newcastle disease virus (strain AF2240) was examined.
    Matched MeSH terms: Cell Aggregation
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links