Displaying all 9 publications

Abstract:
Sort:
  1. Singh Y, Gupta G, Kazmi I, Al-Abbasi FA, Negi P, Chellappan DK, et al.
    Dermatol Ther, 2020 11;33(6):e13871.
    PMID: 32558055 DOI: 10.1111/dth.13871
    Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), the primary causative organism in corona virus disease-19 (COVID-19) infections, is a novel member of the human coronavirus family which was first identified in Wuhan, China, towards the end of 2019. This letter reveals new vital missing links in our current understanding of the mechanisms that lead to cell death triggered by ferroptotic stress in COVID-19 infection. It further reveal the importance of homocysteine mediated trans-sulfuration pathway in COVID-19 infection. Hence, Vitamin B6, folic acid, and Vitamin B12 should be incorporated in the treatment regimen for SARS CoV-2 infections to suppress complications, as the virus mediates altered host cell metabolism.
    Matched MeSH terms: Cell Death/physiology*
  2. Malami I, Abdul AB
    Biomed Pharmacother, 2019 Jan;109:1506-1510.
    PMID: 30551402 DOI: 10.1016/j.biopha.2018.10.200
    Apoptosis is a series of molecular signalling regulating normal cellular growth and development. Cells resistance to apoptosis, however, leads to uncontrolled proliferation. Research involving cancer cell death is one of the most important targeted areas in the discovery of novel anticancer therapy. There are several biochemical pathways that are liked towards cancer cell death of which, uridine-cytidine kinase 2 (UCK2) was recently linked to cell apoptosis induction. UCK2 is responsible for the phosphorylation of uridine and cytidine to their corresponding monophosphate in a salvage pathway of pyrimidine nucleotides biosynthesis. Cytotoxic ribonucleoside analogues that target UCK2 enzyme activity are currently being investigated in clinical trials useful for cancer treatment. Whilst findings have clearly shown that these antimetabolites inhibit cancer development in clinical settings, they have yet to establish linking cytotoxic nucleoside analogues to cancer cell death. In this present review, we propose the probable molecular crosstalk involving UCK2 protein and cancer cell death through cell cycle arrest and triggering of apoptosis involving proteins, MDM2 and the subsequent activation of p53.
    Matched MeSH terms: Cell Death/physiology*
  3. Kapitonova MY, Mansor O
    Malays J Pathol, 2003 Jun;25(1):15-27.
    PMID: 16196374
    OBJECTIVE: To determine in situ using TEM the balance of apoptosis and necrosis in the articular cartilage of patients with inflammatory (rheumatoid arthritis and seronegative spondyloarthritis) and degenerative (osteoarthritis) joint diseases and to establish possible correlation between the cell death rate and the matrix vesicles formation.
    METHODS: Cartilage samples of the knee joint were obtained from patients with rheumatoid arthritis (RA, 18 cases), osteoarthritis (OA, 22 cases), Reiter's disease (RD, 9 cases), peripheral form of the ankylosing spondyloarthritis (AS, 6 cases) and psoriatic arthritis (PA, 6 cases) during arthroscopy or knee surgery. Normal samples taken from autopsy cases without a history of joint diseases were used as control. Samples were processed for TEM with subsequent semi-quantitative estimation of the cell death rate in the superficial, middle and deep zone of non-calcified articular cartilage, and computer-aided ultramorphometric evaluation of the matrix vesicles of different types.
    RESULTS: Both apoptotic and necrotic cell death could be identified in the cartilage of patients with inflammatory joint diseases, including seronegative spondyloarthritides and degenerative arthropathies. Apoptosis dominated over necrosis in all examined arthritides, including RA patients in which necrosis of the chondrocyte was the most frequent among arthropathies, while the highest apoptotic cell death rate was discovered in OA in which it correlated with the volume and numeric density of the matrix vesicles. These data provide evidence that apoptosis may contribute to the cartilage breakdown not only in RA and OA but also in the seronegative spondyloarthritides, which had a significantly higher apoptotic rate than the normal cartilage.
    Matched MeSH terms: Cell Death/physiology*
  4. Leong YQ, Ng KY, Chye SM, Ling APK, Koh RY
    Metab Brain Dis, 2020 01;35(1):11-30.
    PMID: 31811496 DOI: 10.1007/s11011-019-00516-y
    Extracellular senile plaques and intracellular neurofibrillary tangles are the neuropathological findings of the Alzheimer's disease (AD). Based on the amyloid cascade hypothesis, the main component of senile plaques, the amyloid-beta (Aβ) peptide, and its derivative called amyloid precursor protein (APP) both have been found to place their central roles in AD development for years. However, the recent therapeutics have yet to reverse or halt this disease. Previous evidence demonstrates that the accumulation of Aβ peptides and APP can exert neurotoxicity and ultimately neuronal cell death. Hence, we discuss the mechanisms of excessive production of Aβ peptides and APP serving as pathophysiologic stimuli for the initiation of various cell signalling pathways including apoptosis, necrosis, necroptosis and autophagy which lead to neuronal cell death. Conversely, the activation of such pathways could also result in the abnormal generation of APP and Aβ peptides. An elucidation of actions of APP and its metabolite, Aβ, could be vital in suggesting novel therapeutic opportunities.
    Matched MeSH terms: Cell Death/physiology
  5. Liow KY, Chow SC
    Naunyn Schmiedebergs Arch Pharmacol, 2018 Jan;391(1):71-82.
    PMID: 29085973 DOI: 10.1007/s00210-017-1436-6
    The cathepsin B inhibitor benzyloxycarbonyl-phenylalanine-alanine-chloromethyl ketone (z-FA-CMK) was recently found to induce apoptosis at low concentrations in Jurkat T cells, while at higher concentrations, the cells die of necrosis. In the present study, we showed that z-FA-CMK readily depletes intracellular glutathione (GSH) with a concomitant increase in reactive oxygen species (ROS) generation. The toxicity of z-FA-CMK in Jurkat T cells was completely abrogated by N-acetylcysteine (NAC), suggesting that the toxicity mediated by z-FA-CMK is due to oxidative stress. We found that L-buthionine sulfoximine (BSO) which depletes intracellular GSH through the inhibition of GSH biosynthesis in Jurkat T cells did not promote ROS increase or induce cell death. However, NAC was still able to block z-FA-CMK toxicity in Jurkat T cells in the presence of BSO, indicating that the protective effect of NAC does not involve GSH biosynthesis. This is further corroborated by the protective effect of the non-metabolically active D-cysteine on z-FA-CMK toxicity. Furthermore, in BSO-treated cells, z-FA-CMK-induced ROS increased which remains unchanged, suggesting that the depletion of GSH and increase in ROS generation mediated by z-FA-CMK may be two separate events. Collectively, our results demonstrated that z-FA-CMK toxicity is mediated by oxidative stress through the increase in ROS generation.
    Matched MeSH terms: Cell Death/physiology
  6. Liow KY, Chow SC
    Toxicol Appl Pharmacol, 2013 Nov 1;272(3):559-67.
    PMID: 23933532 DOI: 10.1016/j.taap.2013.07.022
    The cathepsin B inhibitor, benzyloxycarbonyl-phenylalanine-alanine-chloromethylketone (z-FA-CMK) was found to be toxic and readily induced cell death in the human T cell line, Jurkat, whereas two other analogs benzyloxycarbonyl-phenylalanine-alanine-fluoromethylketone (z-FA-FMK) and benzyloxycarbonyl-phenylalanine-alanine-diazomethylketone (z-FA-DMK) were not toxic. The toxicity of z-FA-CMK requires not only the CMK group, but also the presence of alanine in the P1 position and the benzyloxycarbonyl group at the N-terminal. Dose-response studies showed that lower concentrations of z-FA-CMK induced apoptosis in Jurkat T cells whereas higher concentrations induced necrosis. In z-FA-CMK-induced apoptosis, both initiator caspases (-8 and -9) and effector caspases (-3, -6 and -7) were processed to their respective subunits in Jurkat T cells. However, only the pro-form of the initiator caspases were reduced in z-FA-CMK-induced necrosis and no respective subunits were apparent. The caspase inihibitor benzyloxycarbonyl-valine-alanine-aspartic acid-(O-methyl)-fluoromehylketone (z-VAD-FMK) inhibits apoptosis and caspase processing in Jurkat T cells treated with low concentration of z-FA-CMK but has no effect on z-FA-CMK-induced necrosis and the loss of initiator caspases. This suggests that the loss of initiator caspases in Jurkat T cells during z-FA-CMK-induced necrosis is not a caspase-dependent process. Taken together, we have demonstrated that z-FA-CMK is toxic to Jurkat T cells and induces apoptosis at low concentrations, while at higher concentrations the cells die of necrosis.
    Matched MeSH terms: Cell Death/physiology
  7. Chang HY, Hor SY, Lim KP, Zain RB, Cheong SC, Rahman MA, et al.
    Electrophoresis, 2013 Aug;34(15):2199-208.
    PMID: 23712713 DOI: 10.1002/elps.201300126
    This study aims to identify cancer-associated proteins in the secretome of oral cancer cell lines. We have successfully established four primary cell cultures of normal cells with a limited lifespan without human telomerase reverse transcriptase (hTERT) immortalization. The secretome of these primary cell cultures were compared with that of oral cancer cell lines using 2DE. Thirty five protein spots were found to have changed in abundance. Unambiguous identification of these proteins was achieved by MALDI TOF/TOF. In silico analysis predicted that 24 of these proteins were secreted via classical or nonclassical mechanisms. The mRNA expression of six genes was found to correlate with the corresponding protein abundance. Ingenuity Pathway Analysis (IPA) core analysis revealed that the identified proteins were relevant in, and related to, cancer development with likely involvements in tumor growth, metastasis, hyperproliferation, tumorigenesis, neoplasia, hyperplasia, and cell transformation. In conclusion, we have demonstrated that a comparative study of the secretome of cancer versus normal cell lines can be used to identify cancer-associated proteins.
    Matched MeSH terms: Cell Death/physiology
  8. Gurunanselage Don RAS, Yap MKK
    Biomed Pharmacother, 2019 Feb;110:918-929.
    PMID: 30572196 DOI: 10.1016/j.biopha.2018.12.023
    Arctium lappa L. is a perennial herb traditionally consumed to improve well-being. It has been widely reported for its antioxidant properties; however, very little is known for its exact mechanisms underlying the anticancer activity. This study aimed to investigate the mechanisms of anticancer action for different A. lappa root extracts. Arctium lappa root was extracted with ethanol, hexane and ethyl acetate, then examined for in vitro anticancer activity against cancerous HeLa, MCF-7, Jurkat cell lines and non-cancerous 3T3 cell lines. Induction of apoptosis was determined by cellular morphological changes, mitochondrial membrane potential (ΔΨm), caspase-3/7 activity and DNA fragmentation. The active compounds present in the most potent root extracts were identified by LC-ESI-MS. Among all the extracts, ethyl acetate root extract has the highest potency with IC50 of 102.2 ± 42.4 μg/ml, followed by ethanolic root extract in Jurkat T cells, at 24 h. None of the extracts were cytotoxic against 3T3 cells, suggesting that the extracts were selective against cancerous cells only. Both ethyl acetate and ethanolic root extracts exhibited significant morphological changes in Jurkat T cells, including the detachment from adjacent cells, appearance of apoptotic bodies and cells shrinkage. The extracts treated cells also displayed an increase in caspase-3/7 activity and alteration in mitochondrial membrane potential. Only ethyl acetate root extract at IC50 induced DNA fragmentation in Jurkat T cells. LC-ESI-MS analysis of the extract revealed the presence of 8 compounds, of which only 6 compounds with various biological activities reported. These findings suggest that the ethyl acetate extract of A. lappa had strong anticancer potential and induced intrinsic apoptosis via loss of ΔΨm and activation of caspase-3/7 This study can provide new insight to the discovery of new promising lead compound in chemopreventive and chemotherapeutic strategies.
    Matched MeSH terms: Cell Death/physiology
  9. Lim YC, Quek H, Offenhäuser C, Fazry S, Boyd A, Lavin M, et al.
    J Neurooncol, 2018 Jul;138(3):509-518.
    PMID: 29564746 DOI: 10.1007/s11060-018-2838-0
    Glioblastoma (GBM) is a highly fatal disease with a 5 year survival rate of less than 22%. One of the most effective treatment regimens to date is the use of radiotherapy which induces lethal DNA double-strand breaks to prevent tumour growth. However, recurrence occurs in the majority of patients and is in-part a result of robust radioresistance mechanisms. In this study, we demonstrate that the multifunctional cytokine, interleukin-6 (IL-6), confers a growth advantage in GBM cells but does not have the same effect on normal neural progenitor cells. Further analysis showed IL-6 can promote radioresistance in GBM cells when exposed to ionising radiation. Ablation of the Ataxia-telangiectasia mutated serine/threonine kinase that is recruited and activated by DNA double-strand breaks reverses the effect of radioresistance and re-sensitised GBM to DNA damage thus leading to increase cell death. Our finding suggests targeting the signaling cascade of DNA damage response is a potential therapeutic approach to circumvent IL-6 from promoting radioresistance in GBM.
    Matched MeSH terms: Cell Death/physiology
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links