Displaying all 8 publications

Abstract:
Sort:
  1. Li J, Guo X, Cai D, Xu Y, Wang Y
    PeerJ, 2023;11:e15925.
    PMID: 37641595 DOI: 10.7717/peerj.15925
    Quinoa (Chenopodium quinoa Willd.) is a highly nutritious food product with a comprehensive development prospect. Here, we discussed the effect of Bacillus amyloliquefaciens 11B91 on the growth, development and salt tolerance (salt concentrations: 0, 150, 300 mmol·L-1) of quinoa and highlighted a positive role for the application of plant growth-promoting rhizobacteria bacteria in quinoa. In this artical, the growth-promoting effect of Bacillus amyloliquefaciens 11B91 on quinoa (Longli No.1) and the changes in biomass, chlorophyll content, root activity and total phosphorus content under salt stress were measured. The results revealed that plants inoculated with 11B91 exhibited increased maximum shoot fresh weight (73.95%), root fresh weight (75.36%), root dry weight (136%), chlorophyll a (65.32%) contents and chlorophyll b (58.5%) contents, root activity (54.44%) and total phosphorus content (16.66%). Additionally, plants inoculated with 11B91 under salt stress plants showed significantly improved, fresh weight (107%), dry weight (133%), chlorophyll a (162%) contents and chlorophyll b (76.37%) contents, root activity (33.07%), and total phosphorus content (42.73%).
    Matched MeSH terms: Chenopodium quinoa*
  2. Alrosan M, Tan TC, Easa AM, Gammoh S, Alu'datt MH, Aleid GM, et al.
    Food Chem, 2023 Mar 15;404(Pt B):134614.
    PMID: 36444092 DOI: 10.1016/j.foodchem.2022.134614
    The utilisation of quinoa protein concentrates (QPCs) is limited due to their poor protein digestibility (78.54 %). In this study, QPCs (1 % w/v) were fermented in 5 % (v/v) water kefir grains (WKG) for 5 days at 25 °C. The protein quality of the fermented QPCs was enhanced, whereby the protein digestibility increased significantly (P 
    Matched MeSH terms: Chenopodium quinoa*
  3. Abdul Hadi N, Marefati A, Purhagen J, Rayner M
    Int J Biol Macromol, 2024 May;267(Pt 1):131523.
    PMID: 38608987 DOI: 10.1016/j.ijbiomac.2024.131523
    Rice and quinoa starches are modified with short-chain fatty acids (SCFA) with different SCFA acyl chain lengths and levels of modification. This work is aimed to investigate the impact of modifying rice and quinoa starches with short-chain fatty acids (SCFAs) on various physicochemical properties, including particle size, protein and amylose content, thermal behavior, pasting characteristics, and in vitro digestibility. Both native and SCFA-starches showed comparable particle sizes, with rice starches ranging from 1.58 to 2.22 μm and quinoa starches from 5.18 to 5.72 μm. SCFA modification led to lower protein content in both rice (0.218-0.255 %) and quinoa starches (0.537-0.619 %) compared to their native counterparts. Esterification led to the reduction of gelatinization and pasting temperatures as well as the hardness of the paste of SCFA-starches were reduced while paste clarity increased. The highest level of modification in SCFA-starch was associated with the highest amount of resistant starch fraction. Principal component analysis revealed that modification levels exerted a greater influence on starch properties than the types of SCFA used (acetyl, propionyl, and butyryl). These findings is importance in considering the degree of substitution or level of modification when tailoring starch properties through SCFA modification, with implications for various applications in food applications.
    Matched MeSH terms: Chenopodium quinoa/chemistry
  4. Rashid N, Khan S, Wahid A, Ibrar D, Irshad S, Bakhsh A, et al.
    PLoS One, 2021;16(11):e0259214.
    PMID: 34748570 DOI: 10.1371/journal.pone.0259214
    Quinoa (Chenopodium quinoa Willd.) has gained significant popularity among agricultural scientists and farmers throughout the world due to its high nutritive value. It is cultivated under a range of soil and climatic conditions; however, late sowing adversely affects its productivity and yield due to shorter growth period. Inorganic and organic phyto-stimulants are promising for improving growth, development, and yield of field crops under stressful environments. Field experiments were conducted during crop cultivation seasons of 2016-17 and 2017-18, to explore the role of inorganic (hydrogen peroxide and ascorbic acid) and organic [moringa leaf extract (MLE) and sorghum water extract (sorgaab)] phyto-stimulants in improving growth and productivity of quinoa (cultivar UAF-Q7). Hydrogen peroxide at 100 μM, ascorbic acid at 500 μM, MLE at 3% and sorgaab at 3% were exogenously applied at anthesis stage of quinoa cultivated under normal (November 21st and 19th during 2016 and 2017) and late-sown (December 26th and 25th during 2016 and 2017) conditions. Application of inorganic and organic phyto-stimulants significantly improved biochemical, physiological, growth and yield attributes of quinoa under late sown conditions. The highest improvement in these traits was recorded for MLE. Application of MLE resulted in higher chlorophyll a and b contents, stomatal conductance, and sub-stomatal concentration of CO2 under normal and late-sowing. The highest improvement in soluble phenolics, anthocyanins, free amino acids and proline, and mineral elements in roots, shoot and grains were observed for MLE application. Growth attributes, including plant height, plant fresh weight and panicle length were significantly improved with MLE application as compared to the rest of the treatments. The highest 1000-grain weight and grain yield per plant were noted for MLE application under normal and late-sowing. These findings depict that MLE has extensive crop growth promoting potential through improving physiological and biochemical activities. Hence, MLE can be applied to improve growth and productivity of quinoa under normal and late-sown conditions.
    Matched MeSH terms: Chenopodium quinoa/drug effects; Chenopodium quinoa/growth & development*; Chenopodium quinoa/metabolism
  5. Abdul Hadi N, Marefati A, Matos M, Wiege B, Rayner M
    Carbohydr Polym, 2020 Jul 15;240:116264.
    PMID: 32475554 DOI: 10.1016/j.carbpol.2020.116264
    Acetylated, propionylated and butyrylated rice and quinoa starches at different levels of modification and starch concentrations, were used to stabilize oil-in-water starch Pickering emulsions at 10% oil fraction. Short-chain fatty acid modified starch Pickering emulsions (SPEs) were characterized after emulsification and after 50 days of storage. The particle size distribution, microstructure, emulsion index, and stability were evaluated. An increase in starch concentration led to a decrease of emulsion droplet sizes. Quinoa starch has shown the capability of stabilizing Pickering emulsions in both the native and modified forms. The emulsifying capacity of SPEs was improved by increasing the chain length of SCFA. Modified quinoa starch with higher chain lengths (i.e. propionylated and butyrylated), at higher levels of modification, showed higher emulsion index (>71%) and stability over the entire 50 days storage. At optimized formulation, SCFA-starch particles have the potential in stabilizing emulsions for functional foods, pharmaceutical formulations, or industrial food applications.
    Matched MeSH terms: Chenopodium quinoa/chemistry*
  6. Cai D, Xu Y, Zhao F, Zhang Y, Duan H, Guo X
    PeerJ, 2021;9:e10702.
    PMID: 33520465 DOI: 10.7717/peerj.10702
    Background: Plant-growth-promoting rhizobacteria (PGPR) can promote plant growth and enhance plant tolerance to salt stress. Pseudomonas sp. strain M30-35 might confer abiotic stress tolerance to its host plants. We evaluated the effects of M30-35 inoculation on the growth and metabolite accumulation of Chenopodium quinoa Willd. during salt stress growth conditions.

    Methods: The effects of M30-35 on the growth of C. quinoa seedlings were tested under salt stress. Seedling growth parameters measured included chlorophyll content, root activity, levels of plant- phosphorus (P), and saponin content.

    Results: M30-35 increased biomass production and root activity compared to non-inoculated plants fertilized with rhizobia and plants grown under severe salt stress conditions. The photosynthetic pigment content of chlorophyll a and b were higher in M30-35-inoculated C. quinoa seedlings under high salt stress conditions compared to non-inoculated seedlings. The stability of P content was also maintained. The content of saponin, an important secondary metabolite in C. quinoa, was increased by the inoculation of M30-35 under 300 mM NaCl conditions.

    Conclusion: Inoculation of M30-35 rescues the growth diminution of C. quinoa seedlings under salt stress.

    Matched MeSH terms: Chenopodium quinoa
  7. Cheng A
    Plant Sci, 2018 Apr;269:136-142.
    PMID: 29606211 DOI: 10.1016/j.plantsci.2018.01.018
    Genetic erosion of crops has been determined way back in the 1940s and accelerated some twenty years later by the inception of the Green Revolution. Claims that the revolution was a complete triumph remain specious, especially since the massive production boost in the global big three grain crops; wheat, maize, and rice that happened back then is unlikely to recur under current climate irregularities. Presently, one of the leading strategies for sustainable agriculture is by unlocking the genetic potential of underutilized crops. The primary focus has been on a suite of ancient cereals and pseudo-cereals which are riding on the gluten-free trend, including, among others, grain amaranth, buckwheat, quinoa, teff, and millets. Each of these crops has demonstrated tolerance to various stress factors such as drought and heat. Apart from being the centuries-old staple in their native homes, these crops have also been traditionally used as forage for livestock. This review summarizes what lies in the past and present for these underutilized cereals, particularly concerning their potential role and significance in a rapidly changing world, and provides compelling insights into how they could one day be on par with the current big three in feeding a booming population.
    Matched MeSH terms: Chenopodium quinoa/genetics
  8. Mariod AA, Salama SM
    ScientificWorldJournal, 2020;2020:6326452.
    PMID: 32549800 DOI: 10.1155/2020/6326452
    The current study has been conducted to evaluate the effect of different processing techniques on the 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging capacity and the gastroprotective potential of Chenopodium quinoa red seeds in acute gastric injury induced by absolute ethanol in rats. Seven groups of female Sprague Dawley rats were assigned to normal and absolute ethanol (absolute EtOH) groups, given distilled water, reference control omeprazole (OMP, 20 mg/kg), pressure-cooked quinoa seeds (QP, 200 mg/kg), first stage-germinated quinoa seeds (QG, 200 mg/kg), Lactobacillus plantarum bacteria-fermented quinoa seeds (QB, 200 mg/kg), and Rhizopus oligosporus fungus-fermented quinoa seeds (QF, 200 mg/kg). One hour after treatment, all groups were given absolute ethanol, except for the normal control rats. All animals were sacrificed after an additional hour, and the stomach tissues were examined for histopathology of hematoxylin and eosin staining, immunohistochemistry of cyclooxygenase 2 (COX-2), and nitric oxide synthase (iNOS). Stomach homogenates were evaluated for oxidative stress parameters and prostaglandin E2 (PGE2). Gene expression was performed for gastric tumor necrosis factor alpha (TNF-α) and nuclear factor kappa of B cells (NF-kB). QB and QG recorded the highest DPPH scavengers compared to QF and QP. The gastroprotective potential of QB was comparable to that of OMP, followed by QF, then QG, and QP as confirmed by the histopathology, immunohistochemistry, and gene expression assessments. In conclusion, differently processed red quinoa seeds revealed variable antioxidant capacity and gastroprotective potential, while the bacterial fermented seeds (QB) showed the highest potential compared to the other processing techniques. These results might offer promising new therapy in the treatment of acute gastric injury.
    Matched MeSH terms: Chenopodium quinoa/chemistry*
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links