Displaying all 10 publications

Abstract:
Sort:
  1. Arifin A, Thambiah SC, Abdullah H, Samsudin IN
    Clin Chem, 2021 06 01;67(6):823-826.
    PMID: 34059896 DOI: 10.1093/clinchem/hvab031
    Matched MeSH terms: Chromosomes, Human, Pair 22
  2. Kruszka P, Addissie YA, McGinn DE, Porras AR, Biggs E, Share M, et al.
    Am J Med Genet A, 2017 Apr;173(4):i.
    PMID: 28328119 DOI: 10.1002/ajmg.a.38224
    The cover image, by Paul Kruszka et al., is based on the Original Article 22q11.2 deletion syndrome in diverse populations, DOI: 10.1002/ajmg.a.38199. Individual images are property of the National Human Genome Research Institute and are in the public domain.
    Matched MeSH terms: Chromosomes, Human, Pair 22
  3. Shuib S, Abdul Latif Z, Abidin NZ, Akmal SN, Zakaria Z
    Malays J Pathol, 2009 Dec;31(2):133-6.
    PMID: 20514857 MyJurnal
    DiGeorge syndrome is associated with microdeletion of chromosome 22q11.2. Most cases occur sporadically although vertical transmission has been documented. We report a rare case of DiGeorge syndrome in an 8-year-old girl. Blood sample of the patient was cultured and harvested following standard procedure. All of the 20 cells analysed showed a karyotype of 45, XX, -22, t (9;22) (p23; q11.2). Cytogenetic investigation done on the patient's mother revealed that she was the carrier for the translocation. Her karyotype was 46, XX, t (9;22) (p23; q11.2). Fluorescence in situ hybridisation (FISH) analysis using TUPLE1 and N25 (Vysis, USA) probes showed deletion of the 22q11.2 region in the patient, confirming the diagnosis of DiGeorge syndrome. FISH analysis showed no deletion of the region in the mother.
    Matched MeSH terms: Chromosomes, Human, Pair 22/genetics*
  4. Dyck JA, Bosco JJ
    Br J Haematol, 1989 May;72(1):64-7.
    PMID: 2736243
    Forty-six Malaysian patients with chronic granulocytic leukaemia were found to be rearranged in the breakpoint cluster region (BCR) of chromosome 22, molecular evidence of Philadelphia chromosome (t9.22) translocation. Through the use of a 1.2 kb 3' BCR probe and two restriction enzyme digests, patients' breakpoints could be localized either to 5' or 3' regions of the BCR. Breakpoint site localization at the time of DNA sampling did not show any positive statistical association to clinical status defined as chronic phase, chronic phase with less than 6 months to blast crisis, accelerated phase and blast crisis. This was in contrast to earlier reports which indicated that patients with breakpoint at 3' site were at a higher biologic risk for entering blast crisis.
    Matched MeSH terms: Chromosomes, Human, Pair 22*
  5. Afroze B, Ngu LH, Roziana A, Aminah M, Noor Shahizan A
    Singapore Med J, 2008 Dec;49(12):e372-4.
    PMID: 19122939
    Supernumerary derivative (22) syndrome is one of the rare genomic syndromes. It is characterised by severe mental retardation, microcephaly, failure to thrive, ear anomalies, preauricular tags or sinus, cleft palate or high arch palate, microganathia, renal anomalies, congenital cardiac defects and genital abnormalities in males. In 99 percent of the cases, one of the parents is a balanced carrier of a translocation between chromosome 11 and chromosome 22. We report the first known case, a female neonate, of supernumerary derivative (22) syndrome from Malaysia.
    Matched MeSH terms: Chromosomes, Human, Pair 22/genetics*
  6. Chin YM, Bosco JJ, Koh CL
    Med J Malaysia, 1992 Jun;47(2):110-3.
    PMID: 1494330
    Deoxyribonucleic acid (DNA) of twenty chronic myeloid leukemia (CML) and thirty acute lymphoblastic leukemia (ALL) patients were analysed by Southern hybridization. The DNA was digested with BglII and hybridized with a 4.5-kilobase (kb) ph1/bcr-3 DNA probe. All the 20 CML patients showed gene rearrangement within a 5.8-kb segment (the major breakpoint cluster region, M-bcr) of the breakpoint cluster region (bcr) gene of chromosome 22, indicating the presence of the Philadelphia chromosome. M-bcr rearrangement at the bcr gene of chromosome twenty-two was not detected in all the thirty ALL patients (nine adults and twenty-one children) and two normal controls.
    Matched MeSH terms: Chromosomes, Human, Pair 22*
  7. Bosco JJ, Dyck JA
    Singapore Med J, 1989 Aug;30(4):363-7.
    PMID: 2814539
    Rearrangements in the DNA of chronic myelogenous leukemia patients of Chinese, Malay and Indian origin were detected in the breakpoint cluster region of chromosome 22 using molecular techniques. The DNA of fifty patients was examined using a 1.2 kb DNA probe. Rearrangements were detected in 46/50 patients. Karyotypic data were available in nine patients, all of whom were Philadelphia chromosome positive and exhibited DNA rearrangement. Detection of the Philadelphia translocation by molecular methods, at this institution, where cytogenetics is not routinely performed, confirms its diagnostic value. The rearrangement data obtained in this study is consistent with molecular features of chronic myelogenous leukemia patients of Western countries.
    Matched MeSH terms: Chromosomes, Human, Pair 22*
  8. Nayfa MG, Jones DB, Benzie JAH, Jerry DR, Zenger KR
    Front Genet, 2020;11:567969.
    PMID: 33193660 DOI: 10.3389/fgene.2020.567969
    Domestication to captive rearing conditions, along with targeted selective breeding have genetic consequences that vary from those in wild environments. Nile tilapia (Oreochromis niloticus) is one of the most translocated and farmed aquaculture species globally, farmed throughout Asia, North and South America, and its African native range. In Egypt, a breeding program established the Abbassa Strain of Nile tilapia (AS) in 2002 based on local broodstock sourced from the Nile River. The AS has been intensively selected for growth and has gone through genetic bottlenecks which have likely shifted levels and composition of genetic diversity within the strain. Consequently, there are questions on the possible genetic impact AS escapees may have on endemic populations of Nile tilapia. However, to date there have been no genetic studies comparing genetic changes in the domesticated AS to local wild populations. This study used 9,827 genome-wide SNPs to investigate population genetic structure and signatures of selection in the AS (generations 9-11) and eight wild Nile tilapia populations from Egypt. SNP analyses identified two major genetic clusters (captive and wild populations), with wild populations showing evidence of isolation-by-distance among the Nile Delta and upstream riverine populations. Between genetic clusters, approximately 6.9% of SNPs were identified as outliers with outliers identified on all 22 O. niloticus chromosomes. A lack of localized outlier clustering on the genome suggests that no genes of major effect were presently detected. The AS has retained high levels of genetic diversity (Ho_All = 0.21 ± 0.01; He_All = 0.23 ± 0.01) when compared to wild populations (Ho_All = 0.18 ± 0.01; He_All = 0.17 ± 0.01) after 11 years of domestication and selective breeding. Additionally, 565 SNPs were unique within the AS line. While these private SNPs may be due to domestication signals or founder effects, it is suspected that introgression with blue tilapia (Oreochromis aureus) has occurred. This study highlights the importance of understanding the effects of domestication in addition to wild population structure to inform future management and dissemination decisions. Furthermore, by conducting a baseline genetic study of wild populations prior to the dissemination of a domestic line, the effects of aquaculture on these populations can be monitored over time.
    Matched MeSH terms: Chromosomes, Human, Pair 22
  9. Mot Yee Yik, Rabiatul Basria S.M.N. Mydin, Emmanuel Jairaj Moses, Shahrul Hafiz Mohd Zaini, Abdul Rahman Azhari, Narazah Mohd Yusoff
    MyJurnal
    Emanuel syndrome, also referred to as supernumerary der(22) or t(11;22) syndrome, is a rare genomic syndrome. Patients are normally presented with multiple congenital anomalies and severe developmental disabilities. Affected newborns usually carry a derivative chromosome 22 inherited from either parent, which stems from a balanced translocation between chromosomes 11 and 22. Unfortunately, identification of Emanuel syndrome carriers is diffi- cult as balanced translocations do not typically present symptoms. We identified two patients diagnosed as Emanuel syndrome with identical chromosomal aberration: 47,XX,+der(22)t(11;22)(q24;q12.1)mat karyotype but presenting variable phenotypic features. Emanuel syndrome patients present variable phenotypes and karyotypes have also been inconsistent albeit the existence of a derivative chromosome 22. Our data suggests that there may exist ac- companying genetic aberrations which influence the outcome of Emanuel syndrome phenotypes but it should be cautioned that more patient observations, diagnostic data and research is required before conclusions can be drawn on definitive karyotypic-phenotypic correlations.

    Matched MeSH terms: Chromosomes, Human, Pair 22
  10. Kruszka P, Addissie YA, McGinn DE, Porras AR, Biggs E, Share M, et al.
    Am J Med Genet A, 2017 Apr;173(4):879-888.
    PMID: 28328118 DOI: 10.1002/ajmg.a.38199
    22q11.2 deletion syndrome (22q11.2 DS) is the most common microdeletion syndrome and is underdiagnosed in diverse populations. This syndrome has a variable phenotype and affects multiple systems, making early recognition imperative. In this study, individuals from diverse populations with 22q11.2 DS were evaluated clinically and by facial analysis technology. Clinical information from 106 individuals and images from 101 were collected from individuals with 22q11.2 DS from 11 countries; average age was 11.7 and 47% were male. Individuals were grouped into categories of African descent (African), Asian, and Latin American. We found that the phenotype of 22q11.2 DS varied across population groups. Only two findings, congenital heart disease and learning problems, were found in greater than 50% of participants. When comparing the clinical features of 22q11.2 DS in each population, the proportion of individuals within each clinical category was statistically different except for learning problems and ear anomalies (P 
    Matched MeSH terms: Chromosomes, Human, Pair 22/chemistry
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links