Displaying all 8 publications

Abstract:
Sort:
  1. Dielievska V, Korzh M, Leontieva F, Ashukina N, Borzova O
    Arch Razi Inst, 2020 06;75(2):257-265.
    PMID: 32621457 DOI: 10.22092/ari.2020.341761.1439
    This study investigated a person with an AB0 discrepancy. Her blood group initially typed at the birth as AB Rh+ (positive); however, it was B Rh+ (positive) or Rh- (negative) when she was in her teens. At room temperature, her erythrocytes were agglutinated by anti-B, and the agglutination was significantly weaker at 37 ºC. As a result, her erythrocytes did not absorb anti-B but anti-A. Furthermore, her erythrocytes were agglutinated by anti-A at 37 ºC with signs of hemolysis in the presence of complement. The unwashed erythrocytes were also agglutinated in an antiglobulin test by polyclonal anti-A at 37 ºC and by heated polyclonal anti-A and anti-A MAB 2-8 at room temperature. Moreover, her serum agglutinated A erythrocytes at room temperature with less activity at 37 ºC; however, it agglutinated B erythrocytes at 37 ºC. The ability of the erythrocytes of this person to absorb anti-A came along with the agglutination of her erythrocytes at 37 ºC by polyclonal serum and decreased activity of the serum to agglutinate A erythrocytes at 37 ºC, compared to room temperature. The absence of anti-B absorbance by the person’s erythrocytes was accompanied by the presence of anti-B in the serum, which was active at 37 ºC. The incubation of the person’s serum with 0 erythrocytes induced the ability of erythrocytes to absorb anti-A and to be hemolyzed by anti-A in the presence of complement in accordance with the person’s characteristics of erythrocytes. The reaction of absorption and agglutination at room temperature and 37 ºC by heated serum with the use of complement may help to reveal both weak A and B antigens and anti-A and anti-B antibodies while AB0 blood typing.
    Matched MeSH terms: Complement System Proteins/immunology
  2. Hashim OH, Gendeh GS, Cheong CN, Jaafar MI
    Immunol Invest, 1994 Mar;23(2):153-60.
    PMID: 8194855
    The effect of Artocarpus integer lectin (lectin C) on the functional activity of guinea-pig complement was investigated. Purified and crude extract of lectin C from six cultivars of Artocarpus integer seeds were found to consume complement and thus decreased the complement-induced haemolytic activity of sensitized sheep erythrocytes. The change in the complement-mediated haemolytic activity was significantly decreased when incubation of the lectins was performed in the presence of melibiose. The reversal effect of the carbohydrate, which is a potent inhibitor of the lectin's binding to O-linked oligosaccharides of glycoprotein, demonstrate involvement of the lectins interaction with O-glycans of glycoproteins in the consumption of guinea-pig complement.
    Matched MeSH terms: Complement System Proteins/immunology*
  3. Chin VK, Basir R, Nordin SA, Abdullah M, Sekawi Z
    Int Microbiol, 2020 May;23(2):127-136.
    PMID: 30875033 DOI: 10.1007/s10123-019-00067-3
    Human leptospirosis is considered as one of the most widespread and potentially fatal zoonotic diseases that causes high mortality and morbidity in the endemic regions of tropical and subtropical countries. The infection can arise from direct or indirect exposure of human through contaminated environment that contains leptospires or animal reservoirs that carry leptospires. The clinical manifestations during human leptospirosis ranges from asymptomatic, mild infections to severe and life-threatening complications involving multi-organ failures with kidneys, lungs and liver severely affected. Despite much efforts have been put in to unravel the pathogenesis during human leptospirosis, it remains obscure to which extent the host factors or the pathogen itself contribute towards the pathogenesis. Host innate immunity, especially, polymorphonuclear neutrophils and complement system are involved in the first line of defense during human leptospirosis. However, pathogenic Leptospira has acquired diverse evasion strategies to evade from host immunity and establish infection in infected hosts. Hence, in this review, we focus on organs pathology during human leptospiral infection and host evasion strategies employed by Leptospira. A profound understanding on leptospiral immunity and how Leptospira subvert the immune system may provide new insights on the development of therapeutic regimens against this species in future.
    Matched MeSH terms: Complement System Proteins/immunology
  4. Prall SP, Ambu L, Nathan S, Alsisto S, Ramirez D, Muehlenbein MP
    Am J Primatol, 2015 Jun;77(6):642-50.
    PMID: 25728599 DOI: 10.1002/ajp.22387
    Despite the implications for the development of life-history traits, endocrine-immune trade-offs in apes are not well studied. This is due, in part, to difficulty in sampling wild primates, and lack of methods available for immune measures using samples collected noninvasively. Evidence for androgen-mediated immune trade-offs in orangutans is virtually absent, and very little is known regarding their pattern of adrenal development and production of adrenal androgens. To remedy both of these deficiencies, sera were collected from orangutans (Pongo pygmaeus morio) (N = 38) at the Sepilok Orangutan Rehabilitation Centre, Sabah, Malaysia, during routine health screenings. Testosterone, dehydroepiandrosterone (DHEA), and dehydroepiandrosterone-sulfate (DHEA-S) were assayed, along with two measures of functional innate immunity. DHEA-S concentrations, but not DHEA, increased with age in this sample of 1-18 year old animals. DHEA concentrations were higher in animals with higher levels of serum bacteria killing ability, while DHEA-S and testosterone concentrations were higher in animals with reduced complement protein activity. Patterns of DHEA-S concentration in this sample are consistent with patterns of adrenarche observed in other apes. Results from this study suggest that in addition to testosterone, DHEA and DHEA-S may have potent effects on immunological activity in this species.
    Matched MeSH terms: Complement System Proteins/immunology
  5. Sudo M, Yamaguchi Y, Späth PJ, Matsumoto-Morita K, Ong BK, Shahrizaila N, et al.
    PLoS One, 2014;9(9):e107772.
    PMID: 25259950 DOI: 10.1371/journal.pone.0107772
    Intravenous immunoglobulin (IVIG) is the first line treatment for Guillain-Barré syndrome and multifocal motor neuropathy, which are caused by anti-ganglioside antibody-mediated complement-dependent cytotoxicity. IVIG has many potential mechanisms of action, and sialylation of the IgG Fc portion reportedly has an anti-inflammatory effect in antibody-dependent cell-mediated cytotoxicity models. We investigated the effects of different IVIG glycoforms on the inhibition of antibody-mediated complement-dependent cytotoxicity. Deglycosylated, degalactosylated, galactosylated and sialylated IgG were prepared from IVIG following treatment with glycosidases and glycosyltransferases. Sera from patients with Guillain-Barré syndrome, Miller Fisher syndrome and multifocal motor neuropathy associated with anti-ganglioside antibodies were used. Inhibition of complement deposition subsequent to IgG or IgM autoantibody binding to ganglioside, GM1 or GQ1b was assessed on microtiter plates. Sialylated and galactosylated IVIGs more effectively inhibited C3 deposition than original IVIG or enzyme-treated IVIGs (agalactosylated and deglycosylated IVIGs). Therefore, sialylated and galactosylated IVIGs may be more effective than conventional IVIG in the treatment of complement-dependent autoimmune diseases.
    Matched MeSH terms: Complement System Proteins/immunology*
  6. Ellegård R, Crisci E, Andersson J, Shankar EM, Nyström S, Hinkula J, et al.
    J Immunol, 2015 Aug 15;195(4):1698-704.
    PMID: 26157174 DOI: 10.4049/jimmunol.1500618
    Mucosa resident dendritic cells (DCs) may represent one of the first immune cells that HIV-1 encounters during sexual transmission. The virions in body fluids can be opsonized with complement factors because of HIV-mediated triggering of the complement cascade, and this appears to influence numerous aspects of the immune defense targeting the virus. One key attribute of host defense is the ability to attract immune cells to the site of infection. In this study, we investigated whether the opsonization of HIV with complement (C-HIV) or a mixture of complement and Abs (CI-HIV) affected the cytokine and chemokine responses generated by DCs, as well as their ability to attract other immune cells. We found that the expression levels of CXCL8, CXCL10, CCL3, and CCL17 were lowered after exposure to either C-HIV or CI-HIV relative to free HIV (F-HIV). DCs exposed to F-HIV induced higher cell migration, consisting mainly of NK cells, compared with opsonized virus, and the chemotaxis of NK cells was dependent on CCL3 and CXCL10. NK cell exposure to supernatants derived from HIV-exposed DCs showed that F-HIV induced phenotypic activation (e.g., increased levels of TIM3, CD69, and CD25) and effector function (e.g., production of IFNγ and killing of target cells) in NK cells, whereas C-HIV and CI-HIV did not. The impairment of NK cell recruitment by DCs exposed to complement-opsonized HIV and the lack of NK activation may contribute to the failure of innate immune responses to control HIV at the site of initial mucosa infection.
    Matched MeSH terms: Complement System Proteins/immunology*
  7. Ellegård R, Khalid M, Svanberg C, Holgersson H, Thorén Y, Wittgren MK, et al.
    Front Immunol, 2018;9:899.
    PMID: 29760706 DOI: 10.3389/fimmu.2018.00899
    Dendritic cells (DCs), natural killer (NK) cells, and T cells play critical roles during primary HIV-1 exposure at the mucosa, where the viral particles become coated with complement fragments and mucosa-associated antibodies. The microenvironment together with subsequent interactions between these cells and HIV at the mucosal site of infection will determine the quality of immune response that ensues adaptive activation. Here, we investigated how complement and immunoglobulin opsonization influences the responses triggered in DCs and NK cells, how this affects their cross talk, and what T cell phenotypes are induced to expand following the interaction. Our results showed that DCs exposed to complement-opsonized HIV (C-HIV) were less mature and had a poor ability to trigger IFN-driven NK cell activation. In addition, when the DCs were exposed to C-HIV, the cytotolytic potentials of both NK cells and CD8 T cells were markedly suppressed. The expression of PD-1 as well as co-expression of negative immune checkpoints TIM-3 and LAG-3 on PD-1 positive cells were increased on both CD4 as well as CD8 T cells upon interaction with and priming by NK-DC cross talk cultures exposed to C-HIV. In addition, stimulation by NK-DC cross talk cultures exposed to C-HIV led to the upregulation of CD38, CXCR3, and CCR4 on T cells. Together, the immune modulation induced during the presence of complement on viral surfaces is likely to favor HIV establishment, dissemination, and viral pathogenesis.
    Matched MeSH terms: Complement System Proteins/immunology*
  8. Bhattacharya P, Ellegård R, Khalid M, Svanberg C, Govender M, Keita ÅV, et al.
    Elife, 2020 09 02;9.
    PMID: 32876566 DOI: 10.7554/eLife.57869
    HIV transmission via genital and colorectal mucosa are the most common routes of dissemination. Here, we explored the effects of free and complement-opsonized HIV on colorectal tissue. Initially, there was higher antiviral responses in the free HIV compared to complement-opsonized virus. The mucosal transcriptional response at 24 hr revealed the involvement of activated T cells, which was mirrored in cellular responses observed at 96 hr in isolated mucosal T cells. Further, HIV exposure led to skewing of T cell phenotypes predominantly to inflammatory CD4+ T cells, that is Th17 and Th1Th17 subsets. Of note, HIV exposure created an environment that altered the CD8+ T cell phenotype, for example expression of regulatory factors, especially when the virions were opsonized with complement factors. Our findings suggest that HIV-opsonization alters the activation and signaling pathways in the colorectal mucosa, which promotes viral establishment by creating an environment that stimulates mucosal T cell activation and inflammatory Th cells.
    Matched MeSH terms: Complement System Proteins/immunology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links