METHODS: We trained twenty-three participants from twelve Asia-Pacific Economic Cooperation (APEC) member economies about international guidelines for medical device vigilance. We developed and used six virtual cases and six questions. We divided participants into six groups and compared their opinions. We also surveyed the country's opinion to investigate the beginning point of 'patient use'. The phases of 'patient use' are divided into: 1) inspecting, 2) preparing, and 3) applying medical device.
RESULTS: As for the question on the beginning point of 'patient use,' 28.6%, 35.7%, and 35.7% of participants provided answers regarding the first, second, and third phases, respectively. In training for applying international guidelines to virtual cases, only one of the six questions reached a consensus between the two groups in all six virtual cases. For the other five questions, different judgments were given in at least two groups.
CONCLUSION: From training courses using virtual cases, we found that there was no consensus on 'patient use' point of view of medical devices. There was a significant difference in applying definitions of adverse events written in guidelines regarding the medical device associated incidents. Our results point out that international harmonization effort is needed not only to harmonize differences in regulations between countries but also to overcome diversity in perspectives existing at the site of medical device use.
METHODS: The Dy-based NPs were synthesized, and they were loaded onto commercial contact lenses. The loading content of the NPs and their release kinetics was determined based on the absorbance of their colloidal solution before and after soaking the contact lenses. The cytotoxicity of the NPs was evaluated, and the IC50 values of their antiamoebic activity against Acanthamoeba sp. were determined by MTT colorimetric assay, followed by observation on the morphological changes by using light microscopy. The mechanism of action of the Dy-based NPs against Acanthamoeba sp. was evaluated by DNA laddering assays.
RESULTS: The loading efficiencies of the Dy-based NPs onto the contact lens were in the range of 30.6-36.1% with respect to their initial concentration (0.5 mg ml-1 ). The Dy NPs were released with the flux approximately 5.5-11 μg cm-2 hr-1 , and the release was completed within 10 hr. The emission of the NPs consistently showed a peak at 575 nm due to Dy3+ ion, offering the possible monitoring and tracking of the NPs. The SEM images indicated the NPs are aggregated on the surface of the contact lenses. The DNA ladder assay suggested that the cells underwent DNA fragmentation, and the cell death was due most probably to necrosis, rather than apoptosis. The cytotoxicity assay of Acanthamoeba sp. suggested that Fe3 O4 -PEG, Fe3 O4 -PEG-Dy2 O3 , Dy(NO3 )3 .6H2 O and Dy(OH)3 NPs have an antiamoebic activity with the IC50 value being 4.5, 5.0, 9.5 and 22.5 μg ml-1 , respectively.
CONCLUSIONS: Overall findings in this study suggested that the Dy-based NPs can be considered as active antiamoebic agents and possess the potential as drugs against Acanthamoeba sp. The NPs could be loaded onto the contact lenses; thus, they can be potentially utilized to treat Acanthamoeba keratitis (AK).