Displaying all 14 publications

Abstract:
Sort:
  1. Firoozinia M, Zareian Jahromi M, Moghadamtousi SZ, Nikzad S, Abdul Kadir H
    Int J Med Sci, 2014;11(6):620-5.
    PMID: 24782652 DOI: 10.7150/ijms.8251
    A family of PI3Ks is the lipid kinases, which enhance intracellular pools of phosphatidyl inositol 3,4,5-tri-phosphate (PIP3) through phosphorylating its precursor. Amplifications and deletions of genes, as well as somatic missense of the PIK3CA gene have been described in many human cancer varieties, including of the brain, colon, liver, lung and stomach. Immunohistochemistry and Real-time quantitative PCR tests were used to determine the PIK3CA gene amplification (gene copy number) and to detect protein expression, respectively. The results obtained were analysed and the ratio of PIK3CA to β-actin gene copy number was calculated. Positive gene amplification of PIK3CA was appointed as a copy number of ≥4. Also, PI3K p110α protein expression was scored from 0 to 3+ and the scores of 2+ and 3+ were considered as positive for PI3K p110α protein expression. We studied 50 breast carcinoma samples for PI3K p110α protein expression and PIK3CA gene copy numbers. In general, 36 out of 50 (72%) breast carcinoma samples showed a significant increase in PIK3CA gene amplification. 12 out of 50 (24%) showed positive staining, and 38 out of 50 (76%) showed negative staining for PI3K p110α expression. We have identified no significant relationship between PIK3CA amplification, race (p= 0.630) and histological type (p=0. 731) in breast carcinoma, but correlation of PIK3CA amplification and age showed a significant relationship (p=0. 003) between them. No significant relationship has been identified in correlation of PI3K p110α protein expression compared to age (p=0. 284), race (p=0. 546) and histological type (p=0. 285). Amplification of PIK3CA was frequent in breast carcinoma and occurs in stages of breast carcinoma. Our result shows that there is a relationship between gene amplification and age in breast carcinoma. We suggest that PIK3CA is significant in breast tumorigenesis serve as a prevalent mechanism contributes to the oncogenic activation pathway of PIK3CA in breast cancer.
    Matched MeSH terms: Continental Population Groups/genetics
  2. Choong SS, Rosmanizam S, Ibrahim K, Gan GG, Ariffin H
    Int J Lab Hematol, 2011 Apr;33(2):182-6.
    PMID: 20868447 DOI: 10.1111/j.1751-553X.2010.01264.x
    Analysis of variable number tandem repeats (VNTRs) by polymerase chain reaction (PCR) is a common method used to predict engraftment status in post-allogeneic haematopoeitic stem cell transplantation (HSCT) patients. Different populations have different copies of repeated DNA sequence and hence, different percentage of informativeness between patient and donor.
    Matched MeSH terms: Continental Population Groups/genetics
  3. Tan SG, Gan YY, Asuan K, Abdullah F
    Hum Genet, 1981;59(1):75-6.
    PMID: 10819027
    Malays, Chinese and Indians from peninsular Malaysia; Ibans and Bidayuh from Sarawak state, Northern Borneo; and Bataks, Minangkabau and Javanese from North Sumatra, Indonesia, were subtyped for Gc (group-specific component) by polyacrylamide gel isoelectric focusing. All eight populations investigated were found to be polymorphic for three common alleles, Gc1F, Gc1S and Gc2.
    Matched MeSH terms: Continental Population Groups/genetics*
  4. Novroski NMM, King JL, Churchill JD, Seah LH, Budowle B
    Forensic Sci Int Genet, 2016 11;25:214-226.
    PMID: 27697609 DOI: 10.1016/j.fsigen.2016.09.007
    Massively parallel sequencing (MPS) can identify sequence variation within short tandem repeat (STR) alleles as well as their nominal allele lengths that traditionally have been obtained by capillary electrophoresis. Using the MiSeq FGx Forensic Genomics System (Illumina), STRait Razor, and in-house excel workbooks, genetic variation was characterized within STR repeat and flanking regions of 27 autosomal, 7 X-chromosome and 24 Y-chromosome STR markers in 777 unrelated individuals from four population groups. Seven hundred and forty six autosomal, 227 X-chromosome, and 324 Y-chromosome STR alleles were identified by sequence compared with 357 autosomal, 107 X-chromosome, and 189 Y-chromosome STR alleles that were identified by length. Within the observed sequence variation, 227 autosomal, 156 X-chromosome, and 112 Y-chromosome novel alleles were identified and described. One hundred and seventy six autosomal, 123 X-chromosome, and 93 Y-chromosome sequence variants resided within STR repeat regions, and 86 autosomal, 39 X-chromosome, and 20 Y-chromosome variants were located in STR flanking regions. Three markers, D18S51, DXS10135, and DYS385a-b had 1, 4, and 1 alleles, respectively, which contained both a novel repeat region variant and a flanking sequence variant in the same nucleotide sequence. There were 50 markers that demonstrated a relative increase in diversity with the variant sequence alleles compared with those of traditional nominal length alleles. These population data illustrate the genetic variation that exists in the commonly used STR markers in the selected population samples and provide allele frequencies for statistical calculations related to STR profiling with MPS data.
    Matched MeSH terms: Continental Population Groups/genetics*
  5. Zuber SH, Yahya N
    J Cancer Res Ther, 2021 6 15;17(2):477-483.
    PMID: 34121695 DOI: 10.4103/jcrt.JCRT_896_18
    Purpose: This study systematically reviews the distribution of racial/ancestral features and their inclusion as covariates in genetic-toxicity association studies following radiation therapy.

    Materials and Methods: Original research studies associating genetic features and normal tissue complications following radiation therapy were identified from PubMed. The distribution of radiogenomic studies was determined by mining the statement of country of origin and racial/ancestrial distribution and the inclusion in analyses. Descriptive analyses were performed to determine the distribution of studies across races/ancestries, countries, and continents and the inclusion in analyses.

    Results: Among 174 studies, only 23 with a population of more one race/ancestry which were predominantly conducted in the United States. Across the continents, most studies were performed in Europe (77 studies averaging at 30.6 patients/million population [pt/mil]), North America (46 studies, 20.8 pt/mil), Asia (46 studies, 2.4 pt/mil), South America (3 studies, 0.4 pt/mil), Oceania (2 studies, 2.1 pt/mil), and none from Africa. All 23 studies with more than one race/ancestry considered race/ancestry as a covariate, and three studies showed race/ancestry to be significantly associated with endpoints.

    Conclusion: Most toxicity-related radiogenomic studies involved a single race/ancestry. Individual Participant Data meta-analyses or multinational studies need to be encouraged.

    Matched MeSH terms: Continental Population Groups/genetics
  6. Churchill JD, Novroski NMM, King JL, Seah LH, Budowle B
    Forensic Sci Int Genet, 2017 09;30:81-92.
    PMID: 28651097 DOI: 10.1016/j.fsigen.2017.06.004
    The MiSeq FGx Forensic Genomics System (Illumina) enables amplification and massively parallel sequencing of 59 STRs, 94 identity informative SNPs, 54 ancestry informative SNPs, and 24 phenotypic informative SNPs. Allele frequency and population statistics data were generated for the 172 SNP loci included in this panel on four major population groups (Chinese, African Americans, US Caucasians, and Southwest Hispanics). Single-locus and combined random match probability values were generated for the identity informative SNPs. The average combined STR and identity informative SNP random match probabilities (assuming independence) across all four populations were 1.75E-67 and 2.30E-71 with length-based and sequence-based STR alleles, respectively. Ancestry and phenotype predictions were obtained using the ForenSeq™ Universal Analysis System (UAS; Illumina) based on the ancestry informative and phenotype informative SNP profiles generated for each sample. Additionally, performance metrics, including profile completeness, read depth, relative locus performance, and allele coverage ratios, were evaluated and detailed for the 725 samples included in this study. While some genetic markers included in this panel performed notably better than others, performance across populations was generally consistent. The performance and population data included in this study support that accurate and reliable profiles were generated and provide valuable background information for laboratories considering internal validation studies and implementation.
    Matched MeSH terms: Continental Population Groups/genetics*
  7. Conti DV, Darst BF, Moss LC, Saunders EJ, Sheng X, Chou A, et al.
    Nat Genet, 2021 Jan;53(1):65-75.
    PMID: 33398198 DOI: 10.1038/s41588-020-00748-0
    Prostate cancer is a highly heritable disease with large disparities in incidence rates across ancestry populations. We conducted a multiancestry meta-analysis of prostate cancer genome-wide association studies (107,247 cases and 127,006 controls) and identified 86 new genetic risk variants independently associated with prostate cancer risk, bringing the total to 269 known risk variants. The top genetic risk score (GRS) decile was associated with odds ratios that ranged from 5.06 (95% confidence interval (CI), 4.84-5.29) for men of European ancestry to 3.74 (95% CI, 3.36-4.17) for men of African ancestry. Men of African ancestry were estimated to have a mean GRS that was 2.18-times higher (95% CI, 2.14-2.22), and men of East Asian ancestry 0.73-times lower (95% CI, 0.71-0.76), than men of European ancestry. These findings support the role of germline variation contributing to population differences in prostate cancer risk, with the GRS offering an approach for personalized risk prediction.
    Matched MeSH terms: Continental Population Groups/genetics*
  8. Bergström A, McCarthy SA, Hui R, Almarri MA, Ayub Q, Danecek P, et al.
    Science, 2020 Mar 20;367(6484).
    PMID: 32193295 DOI: 10.1126/science.aay5012
    Genome sequences from diverse human groups are needed to understand the structure of genetic variation in our species and the history of, and relationships between, different populations. We present 929 high-coverage genome sequences from 54 diverse human populations, 26 of which are physically phased using linked-read sequencing. Analyses of these genomes reveal an excess of previously undocumented common genetic variation private to southern Africa, central Africa, Oceania, and the Americas, but an absence of such variants fixed between major geographical regions. We also find deep and gradual population separations within Africa, contrasting population size histories between hunter-gatherer and agriculturalist groups in the past 10,000 years, and a contrast between single Neanderthal but multiple Denisovan source populations contributing to present-day human populations.
    Matched MeSH terms: Continental Population Groups/genetics
  9. Sandholzer C, Hallman DM, Saha N, Sigurdsson G, Lackner C, Császár A, et al.
    Hum Genet, 1991 Apr;86(6):607-14.
    PMID: 2026424
    Apolipoprotein(a) [apo(a)] exhibits a genetic size polymorphism explaining about 40% of the variability in lipoprotein(a) [Lp(a)] concentration in Tyroleans. Lp(a) concentrations and apo(a) phenotypes were determined in 7 ethnic groups (Tyrolean, Icelandic, Hungarian, Malay, Chinese, Indian, Black Sudanese) and the effects of the apo(a) size polymorphism on Lp(a) levels were estimated in each group. Average Lp(a) concentrations were highly significantly different among these populations, with the Chinese (7.0 mg/dl) having the lowest and the Sudanese (46 mg/dl) the highest levels. Apo(a) phenotype and derived apo(a) allele frequencies were also significantly different among the populations. Apo(a) isoform effects on Lp(a) levels were not significantly different among populations. Lp(a) levels were however roughly twice as high in the same phenotypes in the Indians, and several times as high in the Sudanese, compared with Caucasians. The size variation of apo(a) explains from 0.77 (Malays) to only 0.19 (Sudanese) of the total variability in Lp(a) levels. Together these data show (I) that there is considerable heterogeneity of the Lp(a) polymorphism among populations, (II) that differences in apo(a) allele frequencies alone do not explain the differences in Lp(a) levels among populations and (III) that in some populations, e.g. Sudanese Blacks, Lp(a) levels are mainly determined by factors that are different from the apo(a) size polymorphism.
    Matched MeSH terms: Continental Population Groups/genetics*
  10. Malaspinas AS, Westaway MC, Muller C, Sousa VC, Lao O, Alves I, et al.
    Nature, 2016 Oct 13;538(7624):207-214.
    PMID: 27654914 DOI: 10.1038/nature18299
    The population history of Aboriginal Australians remains largely uncharacterized. Here we generate high-coverage genomes for 83 Aboriginal Australians (speakers of Pama-Nyungan languages) and 25 Papuans from the New Guinea Highlands. We find that Papuan and Aboriginal Australian ancestors diversified 25-40 thousand years ago (kya), suggesting pre-Holocene population structure in the ancient continent of Sahul (Australia, New Guinea and Tasmania). However, all of the studied Aboriginal Australians descend from a single founding population that differentiated ~10-32 kya. We infer a population expansion in northeast Australia during the Holocene epoch (past 10,000 years) associated with limited gene flow from this region to the rest of Australia, consistent with the spread of the Pama-Nyungan languages. We estimate that Aboriginal Australians and Papuans diverged from Eurasians 51-72 kya, following a single out-of-Africa dispersal, and subsequently admixed with archaic populations. Finally, we report evidence of selection in Aboriginal Australians potentially associated with living in the desert.
    Matched MeSH terms: Continental Population Groups/genetics*
  11. King JL, Churchill JD, Novroski NMM, Zeng X, Warshauer DH, Seah LH, et al.
    Forensic Sci Int Genet, 2018 09;36:60-76.
    PMID: 29935396 DOI: 10.1016/j.fsigen.2018.06.005
    The use of single nucleotide polymorphisms (SNPs) in forensic genetics has been limited to challenged samples with low template and/or degraded DNA. The recent introduction of massively parallel sequencing (MPS) technologies has expanded the potential applications of these markers and increased the discrimination power of well-established loci by considering variation in the flanking regions of target loci. The ForenSeq Signature Preparation Kit contains 165 SNP amplicons for ancestry- (aiSNPs), identity- (iiSNPs), and phenotype-inference (piSNPs). In this study, 714 individuals from four major populations (African American, AFA; East Asian, ASN; US Caucasian, CAU; and Southwest US Hispanic, HIS) previously reported by Churchill et al. [Forensic Sci Int Genet. 30 (2017) 81-92; DOI: https://doi.org/10.1016/j.fsigen.2017.06.004] were assessed using STRait Razor v2s to determine the level of diversity in the flanking regions of these amplicons. The results show that nearly 70% of loci showed some level of flanking region variation with 22 iiSNPs and 8 aiSNPs categorized as microhaplotypes in this study. The heterozygosities of these microhaplotypes approached, and in one instance surpassed, those of some core STR loci. Also, the impact of the flanking region on other forensic parameters (e.g., power of exclusion and power of discrimination) was examined. Sixteen of the 94 iiSNPs had an effective allele number greater than 2.00 across the four populations. To assess what effect the flanking region information had on the ancestry inference, genotype probabilities and likelihood ratios were determined. Additionally, concordance with the ForenSeq UAS and Nextera Rapid Capture was evaluated, and patterns of heterozygote imbalance were identified. Pairwise comparison of the iiSNP diplotypes determined the probability of detecting a mixture (i.e., observing ≥ 3 haplotypes) using these loci alone was 0.9952. The improvement in random match probabilities for the full regions over the target iiSNPs was found to be significant. When combining the iiSNPs with the autosomal STRs, the combined match probabilities ranged from 6.40 × 10-73 (ASN) to 1.02 × 10-79 (AFA).
    Matched MeSH terms: Continental Population Groups/genetics*
  12. Yap SN, Phipps ME, Manivasagar M, Bosco JJ
    Immunol Lett, 1999 Jun 01;68(2-3):295-300.
    PMID: 10424435
    The neutrophil antigen (NA)1 and 2 is coded by two recognized allelic forms of Fc gamma receptor IIIB (FcgammaRIIIB). FcgammaRIIIb is a low affinity receptor and preferentially removes immune complexes from the circulation. Systemic lupus erythematosus (SLE) is an autoimmune and polygenic disorder characterized by accumulation of autoimmune complexes. The majority of SLE patients in our medical center are of Chinese ethnicity, followed by Malay and Indian. Recently, studies have focussed on the Fc receptors in different ethnic groups and their relation to SLE. We chose to study the gene distribution of this receptor in the Chinese and Malays population in Malaysia. We designed a polymerase chain reaction allele specific primers (PCR-ASP) method to distinguish the two allelic forms. Genomic DNA was isolated from the peripheral blood of 183 Chinese and 55 Malays SLE patients as well as 100 Chinese and 50 Malays healthy controls. Genotyping of Chinese SLE patients revealed that the gene frequencies for FcgammaRIIIB-NA1 and FcgammaRIIIB-NA2 were 0.648 and 0.347, while in the ethnically matched healthy controls they were 0.68 and 0.32, respectively. One out of the 183 Chinese SLE patients was identified as a NA-null due to the absence of PCR product for both alleles. The FcgammaRIIIB-NA1 and FcgammaRIIIB-NA2 allele frequencies for both the Malays SLE and healthy controls were 0.62 and 0.38.
    Matched MeSH terms: Continental Population Groups/genetics*
  13. Glubb DM, Maranian MJ, Michailidou K, Pooley KA, Meyer KB, Kar S, et al.
    Am J Hum Genet, 2015 Jan 08;96(1):5-20.
    PMID: 25529635 DOI: 10.1016/j.ajhg.2014.11.009
    Genome-wide association studies (GWASs) have revealed SNP rs889312 on 5q11.2 to be associated with breast cancer risk in women of European ancestry. In an attempt to identify the biologically relevant variants, we analyzed 909 genetic variants across 5q11.2 in 103,991 breast cancer individuals and control individuals from 52 studies in the Breast Cancer Association Consortium. Multiple logistic regression analyses identified three independent risk signals: the strongest associations were with 15 correlated variants (iCHAV1), where the minor allele of the best candidate, rs62355902, associated with significantly increased risks of both estrogen-receptor-positive (ER(+): odds ratio [OR] = 1.24, 95% confidence interval [CI] = 1.21-1.27, ptrend = 5.7 × 10(-44)) and estrogen-receptor-negative (ER(-): OR = 1.10, 95% CI = 1.05-1.15, ptrend = 3.0 × 10(-4)) tumors. After adjustment for rs62355902, we found evidence of association of a further 173 variants (iCHAV2) containing three subsets with a range of effects (the strongest was rs113317823 [pcond = 1.61 × 10(-5)]) and five variants composing iCHAV3 (lead rs11949391; ER(+): OR = 0.90, 95% CI = 0.87-0.93, pcond = 1.4 × 10(-4)). Twenty-six percent of the prioritized candidate variants coincided with four putative regulatory elements that interact with the MAP3K1 promoter through chromatin looping and affect MAP3K1 promoter activity. Functional analysis indicated that the cancer risk alleles of four candidates (rs74345699 and rs62355900 [iCHAV1], rs16886397 [iCHAV2a], and rs17432750 [iCHAV3]) increased MAP3K1 transcriptional activity. Chromatin immunoprecipitation analysis revealed diminished GATA3 binding to the minor (cancer-protective) allele of rs17432750, indicating a mechanism for its action. We propose that the cancer risk alleles act to increase MAP3K1 expression in vivo and might promote breast cancer cell survival.
    Matched MeSH terms: Continental Population Groups/genetics
  14. Dowsett L, Porras AR, Kruszka P, Davis B, Hu T, Honey E, et al.
    Am J Med Genet A, 2019 02;179(2):150-158.
    PMID: 30614194 DOI: 10.1002/ajmg.a.61033
    Cornelia de Lange syndrome (CdLS) is a dominant multisystemic malformation syndrome due to mutations in five genes-NIPBL, SMC1A, HDAC8, SMC3, and RAD21. The characteristic facial dysmorphisms include microcephaly, arched eyebrows, synophrys, short nose with depressed bridge and anteverted nares, long philtrum, thin lips, micrognathia, and hypertrichosis. Most affected individuals have intellectual disability, growth deficiency, and upper limb anomalies. This study looked at individuals from diverse populations with both clinical and molecularly confirmed diagnoses of CdLS by facial analysis technology. Clinical data and images from 246 individuals with CdLS were obtained from 15 countries. This cohort included 49% female patients and ages ranged from infancy to 37 years. Individuals were grouped into ancestry categories of African descent, Asian, Latin American, Middle Eastern, and Caucasian. Across these populations, 14 features showed a statistically significant difference. The most common facial features found in all ancestry groups included synophrys, short nose with anteverted nares, and a long philtrum with thin vermillion of the upper lip. Using facial analysis technology we compared 246 individuals with CdLS to 246 gender/age matched controls and found that sensitivity was equal or greater than 95% for all groups. Specificity was equal or greater than 91%. In conclusion, we present consistent clinical findings from global populations with CdLS while demonstrating how facial analysis technology can be a tool to support accurate diagnoses in the clinical setting. This work, along with prior studies in this arena, will assist in earlier detection, recognition, and treatment of CdLS worldwide.
    Matched MeSH terms: Continental Population Groups/genetics
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links