PURPOSE: The present study aims to look at the association between CH and severity of OSAS, and whether CH could be another link between OSAS and the development of glaucoma.
METHODS: This was a cross-sectional, observational study at the University Malaya Medical Centre, Kuala Lumpur. Patients undergoing polysomnography for assessment of OSAS were recruited. We measured central corneal thickness (CCT) using optical biometry, and CH using ocular response analysis. Intraocular pressure (IOP) and Humphrey visual field (HVF) indices were also measured. The Apnea Hypopnea Index (AHI) divided patients into normal, mild, moderate, and severe OSAS categories. The normal and mild categories (47.9%) were then collectively called group 1, and the moderate and severe categories (52.1%) were called group 2. T tests, Pearson correlation tests, and general linear model analysis were performed, with P .05). CH correlated negatively with AHI (r = -0.229, P = .013) and positively with lowest oxygen saturation (r = 0.213, P = .022).
CONCLUSIONS: CH is lower in moderate/severe OSAS than in normal/mild cases. This may be another link between OSAS and the development of glaucoma; further studies are indicated to determine the significance of this connection.
Methods: BMuc were subjected to 10 d of induction factors to investigate the potential of cells to differentiate into corneal lineages.
Results: Corneal stem cell markers β1-integrin, C/EBPδ, ABCG2, p63, and CK3 were upregulated in the gene expression analysis in induced BMuc, whereas CK3 and p63 showed significant protein expression in induced BMuc compared to the uninduced cells. BMuc were then left to reach 80% confluency after differential trypsinization. The cells were harvested and cultivated on a commercially available untreated air-dried amniotic membrane (AM) in a Transwell system in induction medium. The corneal constructs were fabricated and then implanted into damaged rat corneas for up to 8 weeks. A significant improvement was detected in the treatment group at 8 weeks post-implantation, as revealed by slit lamp biomicroscopy analysis. The structure and thickness of the corneal layer were also analyzed using histological staining and time-domain optical coherence tomography scans and were found to resemble a native corneal layer. The protein expression for CK3 and p63 were continuously detected throughout the corneal epithelial layer in the corneal construct.
Conclusions: In conclusion, human BMuc can be induced to express a corneal epithelial-like phenotype. The addition of BMuc improves corneal clarity, prevents vascularization, increases corneal thickness and stromal alignment, and appears to have no adverse effect on the host after implantation.