Displaying all 6 publications

Abstract:
Sort:
  1. Suhaimi NF, Jalaludin J, Abu Bakar S
    Rev Environ Health, 2021 Mar 26;36(1):77-93.
    PMID: 32857724 DOI: 10.1515/reveh-2020-0065
    Air pollution is a substantial environmental threat to children and acts as acute and chronic disease risk factors alike. Several studies have previously evaluated epigenetic modifications concerning its exposure across various life stages. However, findings on epigenetic modifications as the consequences of air pollution during childhood are rather minimal. This review evaluated highly relevant studies in the field to analyze the existing literature regarding exposure to air pollution, with a focus on epigenetic alterations during childhood and their connections with respiratory health effects. The search was conducted using readily available electronic databases (PubMed and ScienceDirect) to screen for children's studies on epigenetic mechanisms following either pre- or post-natal exposure to air pollutants. Studies relevant enough and matched the predetermined criteria were chosen to be reviewed. Non-English articles and studies that did not report both air monitoring and epigenetic outcomes in the same article were excluded. The review found that epigenetic changes have been linked with exposure to air pollutants during early life with evidence and reports of how they may deregulate the epigenome balance, thus inducing disease progression in the future. Epigenetic studies evolve as a promising new approach in deciphering the underlying impacts of air pollution on deoxyribonucleic acid (DNA) due to links established between some of these epigenetic mechanisms and illnesses.
    Matched MeSH terms: DNA Methylation/drug effects*
  2. Nour El Huda AR, Norsidah KZ, Nabil Fikri MR, Hanisah MN, Kartini A, Norlelawati AT
    Psychiatry Clin Neurosci, 2018 Apr;72(4):266-279.
    PMID: 29160620 DOI: 10.1111/pcn.12622
    AIM: This study examined catechol-O-methyltransferase (COMT) DNA methylation in the peripheral blood of schizophrenia patients and also in healthy controls to investigate its potential use as a peripheral biomarker of schizophrenia and its relations with the clinical variables of schizophrenia patients.

    METHODS: We examined the DNA methylation levels of COMT using genomic DNA from the peripheral blood of schizophrenia patients (n = 138) and healthy control participants (n = 132); all were Malaysian Malays. The extracted DNA was bisulfite converted, and the percentage methylation ratio value was calculated based on the results following a MethyLight protocol analysis.

    RESULTS: The percentage methylation ratio of COMT was lower in schizophrenia than it was in the healthy controls (P DNA methylation rate was lower in patients receiving atypical antipsychotics (P = 0.004) and risperidone (P = 0.049) as compared to typical antipsychotics. The Excitement and Depressed subdomains of the Positive and Negative Syndrome Scale were inversely related (P DNA methylation.

    CONCLUSION: Our results suggested that the methylation level was affected by the severity of the clinical symptoms of schizophrenia and might also be influenced by pharmacological treatment. The epigenetic alteration of COMT in the peripheral blood could be a potential peripheral biomarker of schizophrenia.

    Matched MeSH terms: DNA Methylation/drug effects
  3. Plusquin M, Guida F, Polidoro S, Vermeulen R, Raaschou-Nielsen O, Campanella G, et al.
    Environ Int, 2017 11;108:127-136.
    PMID: 28843141 DOI: 10.1016/j.envint.2017.08.006
    Long-term exposure to air pollution has been associated with several adverse health effects including cardiovascular, respiratory diseases and cancers. However, underlying molecular alterations remain to be further investigated. The aim of this study is to investigate the effects of long-term exposure to air pollutants on (a) average DNA methylation at functional regions and, (b) individual differentially methylated CpG sites. An assumption is that omic measurements, including the methylome, are more sensitive to low doses than hard health outcomes. This study included blood-derived DNA methylation (Illumina-HM450 methylation) for 454 Italian and 159 Dutch participants from the European Prospective Investigation into Cancer and Nutrition (EPIC). Long-term air pollution exposure levels, including NO2, NOx, PM2.5, PMcoarse, PM10, PM2.5 absorbance (soot) were estimated using models developed within the ESCAPE project, and back-extrapolated to the time of sampling when possible. We meta-analysed the associations between the air pollutants and global DNA methylation, methylation in functional regions and epigenome-wide methylation. CpG sites found differentially methylated with air pollution were further investigated for functional interpretation in an independent population (EnviroGenoMarkers project), where (N=613) participants had both methylation and gene expression data available. Exposure to NO2 was associated with a significant global somatic hypomethylation (p-value=0.014). Hypomethylation of CpG island's shores and shelves and gene bodies was significantly associated with higher exposures to NO2 and NOx. Meta-analysing the epigenome-wide findings of the 2 cohorts did not show genome-wide significant associations at single CpG site level. However, several significant CpG were found if the analyses were separated by countries. By regressing gene expression levels against methylation levels of the exposure-related CpG sites, we identified several significant CpG-transcript pairs and highlighted 5 enriched pathways for NO2 and 9 for NOx mainly related to the immune system and its regulation. Our findings support results on global hypomethylation associated with air pollution, and suggest that the shores and shelves of CpG islands and gene bodies are mostly affected by higher exposure to NO2 and NOx. Functional differences in the immune system were suggested by transcriptome analyses.
    Matched MeSH terms: DNA Methylation/drug effects*
  4. Elias MH, Baba AA, Husin A, Sulong S, Hassan R, Sim GA, et al.
    Biomed Res Int, 2013;2013:129715.
    PMID: 23484077 DOI: 10.1155/2013/129715
    Development of resistance to imatinib mesylate (IM) in chronic myeloid leukemia (CML) patients has emerged as a significant clinical problem. The observation that increased epigenetic silencing of potential tumor suppressor genes correlates with disease progression in some CML patients treated with IM suggests a relationship between epigenetic silencing and resistance development. We hypothesize that promoter hypermethylation of HOXA4 could be an epigenetic mechanism mediating IM resistance in CML patients. Thus a study was undertaken to investigate the promoter hypermethylation status of HOXA4 in CML patients on IM treatment and to determine its role in mediating resistance to IM. Genomic DNA was extracted from peripheral blood samples of 95 CML patients (38 good responders and 57 resistant) and 12 normal controls. All samples were bisulfite treated and analysed by methylation-specific high-resolution melt analysis. Compared to the good responders, the HOXA4 hypermethylation level was significantly higher (P = 0.002) in IM-resistant CML patients. On comparing the risk, HOXA4 hypermethylation was associated with a higher risk for IM resistance (OR 4.658; 95% CI, 1.673-12.971; P = 0.003). Thus, it is reasonable to suggest that promoter hypermethylation of HOXA4 gene could be an epigenetic mechanism mediating IM resistance in CML patients.
    Matched MeSH terms: DNA Methylation/drug effects*
  5. Ngai SC, Rosli R, Al Abbar A, Abdullah S
    Biomed Res Int, 2015;2015:346134.
    PMID: 25961011 DOI: 10.1155/2015/346134
    Stable introduction of a functional gene in hematopoietic progenitor cells (HPCs) has appeared to be an alternative approach to correct genetically linked blood diseases. However, it is still unclear whether lentiviral vector (LV) is subjected to gene silencing in HPCs. Here, we show that LV carrying green fluorescent protein (GFP) reporter gene driven by cytomegalovirus (CMV) promoter was subjected to transgene silencing after transduction into HPCs. This phenomenon was not due to the deletion of proviral copy number. Study using DNA demethylating agent and histone deacetylase (HDAC) inhibitor showed that the drugs could either prevent or reverse the silencing effect. Using sodium bisulfite sequencing and chromatin immunoprecipitation (ChIP) assay, we demonstrated that DNA methylation occurred soon after LV transduction. At the highest level of gene expression, CMV promoter was acetylated and was in a euchromatin state, while GFP reporter gene was acetylated but was strangely in a heterochromatin state. When the expression declined, CMV promoter underwent transition from acetylated and euchromatic state to a heterochromatic state, while the GFP reporter gene was in deacetylated and heterochromatic state. With these, we verify that DNA methylation and dynamic histone modifications lead to transgene silencing in HPCs transduced with LV.
    Matched MeSH terms: DNA Methylation/drug effects
  6. Jafari S, Hosseini MS, Hajian M, Forouzanfar M, Jafarpour F, Abedi P, et al.
    Mol. Reprod. Dev., 2011 Aug;78(8):576-84.
    PMID: 21721066 DOI: 10.1002/mrd.21344
    In this study, fibroblast cells were stably transfected with mouse POU5F1 promoter-driven enhanced green fluorescent protein (EGFP) to investigate the effect of S-adenosylhomocysteine (SAH), the reversible non-toxic inhibitor of DNA-methyltransferases (DNMTs), at different intervals post-fusion on in vitro development of cloned bovine embryos. Treatment with SAH for 12 hr resulted in 54.6 ± 7.7% blastocyst production, which was significantly greater than in vitro fertilized embryos (IVF: 37.2 ± 2.7%), cloned embryos treated with SAH for 72 hr (31.0 ± 7.6%), and control cloned embryos (34.6 ± 3.6%). The fluorescence intensities of the EGFP-POU5F1 reporter gene at all intervals of SAH treatment, except of 72 hr, were significantly higher than control somatic cell nuclear transfers (SCNT) embryos. The intensity of DNA-methylation in cloned embryos treated with SAH for 48 hr was similar to that of IVF embryos, and was significantly lower than the other SCNT groups. The levels of H3K9 acetylation in all SCNT groups were significantly lower than IVF embryos. Real-time PCR analysis of gene expression revealed significantly higher expression of POU5F1 in cloned versus IVF blastocysts. Neither embryo production method (SCNT vs. IVF) nor the SAH treatment interval affected expression of the BCL2 gene. Cloned embryos at all intervals of SAH treatment, except for 24 hr, had significantly increased VEGF transcript compared to IVF and control SCNT embryos. It was suggested that the time interval of DNMT inhibition may have important consequences on different in vitro features of bovine SCNT, and the improving effects of DNMT inhibition on developmental competency of cloned embryos are restricted to a specific period of time preceding de novo methylation.
    Matched MeSH terms: DNA Methylation/drug effects
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links