Displaying all 12 publications

Abstract:
Sort:
  1. Mah JK, Kass RA
    Asian J Neurosurg, 2016 Jan-Mar;11(1):15-21.
    PMID: 26889273 DOI: 10.4103/1793-5482.172593
    Decompressive craniectomy is commonly use as the treatment for medically refractory intracranial hypertension. Unexpected improvement in patient's neurological status has been observed among patients that underwent cranioplasty. Restoration of cerebral blood flow (CBF) hemodynamics is one of the contributing factors. This study was conducted to determine the impact of cranioplasty on CBF and its correlation with clinical outcome.
    Matched MeSH terms: Decompressive Craniectomy
  2. Hutchinson PJ, Kolias AG, Tajsic T, Adeleye A, Aklilu AT, Apriawan T, et al.
    Acta Neurochir (Wien), 2019 Jul;161(7):1261-1274.
    PMID: 31134383 DOI: 10.1007/s00701-019-03936-y
    BACKGROUND: Two randomised trials assessing the effectiveness of decompressive craniectomy (DC) following traumatic brain injury (TBI) were published in recent years: DECRA in 2011 and RESCUEicp in 2016. As the results have generated debate amongst clinicians and researchers working in the field of TBI worldwide, it was felt necessary to provide general guidance on the use of DC following TBI and identify areas of ongoing uncertainty via a consensus-based approach.

    METHODS: The International Consensus Meeting on the Role of Decompressive Craniectomy in the Management of Traumatic Brain Injury took place in Cambridge, UK, on the 28th and 29th September 2017. The meeting was jointly organised by the World Federation of Neurosurgical Societies (WFNS), AO/Global Neuro and the NIHR Global Health Research Group on Neurotrauma. Discussions and voting were organised around six pre-specified themes: (1) primary DC for mass lesions, (2) secondary DC for intracranial hypertension, (3) peri-operative care, (4) surgical technique, (5) cranial reconstruction and (6) DC in low- and middle-income countries.

    RESULTS: The invited participants discussed existing published evidence and proposed consensus statements. Statements required an agreement threshold of more than 70% by blinded voting for approval.

    CONCLUSIONS: In this manuscript, we present the final consensus-based recommendations. We have also identified areas of uncertainty, where further research is required, including the role of primary DC, the role of hinge craniotomy and the optimal timing and material for skull reconstruction.

    Matched MeSH terms: Decompressive Craniectomy/methods*
  3. Abdullah JY, Rajion ZA, Martin AG, Jaafar A, Ghani ARI, Abdullah JM
    Neurocirugia (Astur : Engl Ed), 2019 02 16;30(3):115-123.
    PMID: 30782505 DOI: 10.1016/j.neucir.2018.12.004
    INTRODUCTION: Intracranial volume (ICV) is an important tool in the management of patients undergoing decompressive craniectomy (DC) surgery. The aim of this study was to validate ICV measurement applying the shape-based interpolation (SBI) method using open source software on computed tomography (CT) images.

    METHODS: The pre- and post-operative CT images of 55 patients undergoing DC surgery were analyzed. The ICV was measured by segmenting every slice of the CT images, and compared with estimated ICV calculated using the 1-in-10 sampling strategy and processed using the SBI method. An independent t test was conducted to compare the ICV measurements between the two different methods. The calculation using this method was repeated three times for reliability analysis using the intraclass correlations coefficient (ICC). The Bland-Altman plot was used to measure agreement between the methods for both pre- and post-operative ICV measurements.

    RESULTS: The mean ICV (±SD) were 1341.1±122.1ml (manual) and 1344.11±122.6ml (SBI) for the preoperative CT data. The mean ICV (±SD) were 1396.4±132.4ml (manual) and 1400.53±132.1ml (SBI) for the post-operative CT data. No significant difference was found in ICV measurements using the manual and the SBI methods (p=.983 for pre-op, and p=.960 for post-op). The intrarater ICC showed a significant correlation; ICC=1.00. The Bland-Altman plot showed good agreement between the manual and the SBI method.

    CONCLUSION: The shape-based interpolation method with 1-in-10 sampling strategy gave comparable results in estimating ICV compared to manual segmentation. Thus, this method could be used in clinical settings for rapid, reliable and repeatable ICV estimations.

    Matched MeSH terms: Decompressive Craniectomy*
  4. Sam JE, Kandasamy R, Wong ASH, Ghani ARI, Ang SY, Idris Z, et al.
    World Neurosurg, 2021 12;156:e381-e391.
    PMID: 34563715 DOI: 10.1016/j.wneu.2021.09.074
    OBJECTIVE: Subgaleal drains are generally deemed necessary for cranial surgeries including decompressive craniectomies (DCs) to avoid excessive postoperative subgaleal hematoma (SGH) formation. Many surgeries have moved away from routine prophylactic drainage but the role of subgaleal drainage in cranial surgeries has not been addressed.

    METHODS: This was a randomized controlled trial at 2 centers. A total of 78 patients requiring DC were randomized in a 1:1:1 ratio into 3 groups: vacuum drains (VD), passive drains (PD), and no drains (ND). Complications studied were need for surgical revision, SGH amount, new remote hematomas, postcraniectomy hydrocephalus (PCH), functional outcomes, and mortality.

    RESULTS: Only 1 VD patient required surgical revision to evacuate SGH. There was no difference in SGH thickness and volume among the 3 drain types (P = 0.171 and P = 0.320, respectively). Rate of new remote hematoma and PCH was not significantly different (P = 0.647 and P = 0.083, respectively), but the ND group did not have any patient with PCH. In the subgroup analysis of 49 patients with traumatic brain injury, the SGH amount of the PD and ND group was significantly higher than that of the VD group. However, these higher amounts did not translate as a significant risk factor for poor functional outcome or mortality. VD may have better functional outcome and mortality.

    CONCLUSIONS: In terms of complication rates, VD, PD, and ND may be used safely in DC. A higher amount of SGH was not associated with poorer outcomes. Further studies are needed to clarify the advantage of VD regarding functional outcome and mortality, and if ND reduces PCH rates.

    Matched MeSH terms: Decompressive Craniectomy/methods*; Decompressive Craniectomy/mortality
  5. Raffiq MA, Haspani MS, Kandasamy R, Abdullah JM
    Surg Neurol Int, 2014;5:102.
    PMID: 25101197 DOI: 10.4103/2152-7806.135342
    BACKGROUND: Malignant middle cerebral artery (MCA) infarction is a devastating clinical entity affecting about 10% of stroke patients. Decompressive craniectomy has been found to reduce mortality rates and improve outcome in patients.

    METHODS: A retrospective case review study was conducted to compare patients treated with medical therapy and decompressive surgery for malignant MCA infarction in Hospital Kuala Lumpur over a period of 5 years (from January 2007 to December 2012). A total of 125 patients were included in this study; 90 (72%) patients were treated with surgery, while 35 (28%) patients were treated with medical therapy. Outcome was assessed in terms of mortality rate at 30 days, Glasgow Outcome Score (GOS) on discharge, and modified Rankin scale (mRS) at 3 and 6 months.

    RESULTS: Decompressive craniectomy resulted in a significant reduction in mortality rate at 30 days (P < 0.05) and favorable GOS outcome at discharge (P < 0.05). Good functional outcome based on mRS was seen in 48.9% of patients at 3 months and in 64.4% of patients at 6 months (P < 0.05). Factors associated with good outcome include infarct volume of less than 250 ml, midline shift of less than 10 mm, absence of additional vascular territory involvement, good preoperative Glasgow Coma Scale (GCS) score, and early surgical intervention (within 24 h) (P < 0.05). Age and dominant hemisphere infarction had no significant association with functional outcome.

    CONCLUSION: Decompressive craniectomy achieves good functional outcome in, young patients with good preoperative GCS score and favorable radiological findings treated with surgery within 24 h of ictus.

    Matched MeSH terms: Decompressive Craniectomy
  6. Low PH, Abdullah JY, Abdullah AM, Yahya S, Idris Z, Mohamad D
    J Craniofac Surg, 2019 Jun 28.
    PMID: 31261343 DOI: 10.1097/SCS.0000000000005713
    PURPOSE: Decompressive craniectomy is a life-saving procedure in the setting of malignant brain swelling. Patients who survive require cranioplasty for anatomical reconstruction and cerebral protection. Autologous cranioplasty remains the commonest practice nowadays, but partial bone flap defects are frequently encountered. The authors, therefore, seek to develop a new technique of reconstruction for cranioplasty candidate with partial bone flap defect utilizing computer-assisted 3D modeling and printing.

    METHODS: A prospective study was conducted to evaluate the outcome of a new reconstruction technique that produces patient-specific hybrid polymethyl methacrylate-autologous cranial implant. Computer-assisted 3D modeling and printing was utilized to produce patient-specific molds, which allowed real-time reconstruction of bone flap with partial defect intra-operatively.

    RESULTS: Outcome assessment for 11 patients at 6 weeks and 3 months post-operatively revealed satisfactory implant alignment with favorable cosmesis. The mean visual analog scale for cosmesis was 91. Mean implant size was 50cm, and the mean duration of intra-operative reconstruction was 30 minutes. All of them revealed improvement in quality of life following surgery as measured by the SF-36 score. Cost analysis revealed that this technique is more cost-effective compared to customized cranial prosthesis.

    CONCLUSION: This new technique and approach produce hybrid autologous-alloplastic bone flap that resulted in satisfactory implant alignment and favorable cosmetic outcome with relatively low costs.

    Matched MeSH terms: Decompressive Craniectomy
  7. Ghani AR, John JT, Idris Z, Ghazali MM, Murshid NL, Musa KI
    Malays J Med Sci, 2008 Oct;15(4):48-55.
    PMID: 22589638 MyJurnal
    A prospective cohort study was done to evaluate the role of surgery in patients with spontaneous supratentorial intracerebral haemorrhage (SICH) and to identify predictors of outcome including the use of invasive regional cortical cerebral blood flow (rCoBF) and microdialysis. Surgery consisted of craniotomy or decompressive craniectomy. The ventriculostomy for intracranial pressure (ICP) monitoring and drainage and regional cortical cerebral blood flow (rCoBF) and microdialysis were performed in all subjects. Pre and post operative information on subjects were collected. The study end points was functional outcome at 6 months based on a dichotomised Glasgow Outcome Scale (GOS).The selected clinical, radiological, biochemical and treatment factors that may influence the functional outcome were analysed for their significance. A total of 36 patients were recruited with 27(75%) patients had Glasgow Coma Score (GCS) between 5 to 8 on admission and 9(25%) were admitted with GCS of 9. At 6 months, 86 % had a poor or unfavourable outcome (GOS I-III) and 14% had good or favourable outcome (GOS IV-V). The mortality rate at 6 months was 55%. Univariate analysis for the functional outcome identified 2 significant variables, the midline shift (p=0.013) and mean lactate:pyruvate ratio (p=0.038). Multivariate analysis identified midline shift as the single significant independent predictor of functional outcome (p=0.013).Despite aggressive regional cortical cerebral blood flow (rCoBF) and microdialysis study for detection of early ischemia, surgical treatment for spontaneous intracerebral haemorrhage only benefited a small number of patients in terms of favourable outcome (14%) and in the majority of patients (86%), the outcome was unfavourable. Patients with midline shift > 5mm has almost 21 times higher chances (adj) OR 20.8 of being associated with poor outcome (GOS I-III).
    Matched MeSH terms: Decompressive Craniectomy
  8. Martin AG, Abdullah JY, Jaafar A, Ghani AR, Rajion ZA, Abdullah JM
    J Clin Neurosci, 2015 Apr;22(4):735-9.
    PMID: 25564264 DOI: 10.1016/j.jocn.2014.09.021
    Decompressive craniectomy (DC) is a surgical option in managing uncontrolled raised intracranial pressure refractory to medical therapy. The authors evaluate the addition of zygomatic arch (ZA) resection with standard DC and analyze the resulting increase in brain volume using three-dimensional volumetric CT scans. Measurements of brain expansion dimension morphometrics from CT images were also analyzed. Eighteen patients were selected and underwent DC with ZA resection. The pre- and post-operative CT images were analyzed for volume and dimensional changes. CT images of 29 patients previously operated on at the same center were retrieved from the picture archiving and communication system (PACS) and were similarly studied. The findings obtained from the two groups were compared and analyzed. Analysis from three-dimensional CT volumetric techniques revealed an significant increase of 27.97ml (95% confidence interval [CI]: 39.98-180.36; p=0.048) when compared with standard DC. Brain expansion analysis of maximum hemicraniectomy diameter revealed a mean difference of 0.82cm (95% CI: 0.25-1.38; p=0.006). Analysis of the ratio of maximum hemicraniectomy diameter to maximum anteroposterior diameter gave a mean difference of 0.04 (95% CI: 0.05-0.07; p=0.026). The addition of ZA resection to standard DC may prove valuable in terms of absolute brain volume gain. This technique is comparable to other maneuvers used to provide maximum brain expansion in the immediate post-operative period.
    Matched MeSH terms: Decompressive Craniectomy/methods*
  9. Quah BL, Low HL, Wilson MH, Bimpis A, Nga VDW, Lwin S, et al.
    World Neurosurg, 2016 Oct;94:13-17.
    PMID: 27368511 DOI: 10.1016/j.wneu.2016.06.081
    BACKGROUND: The optimal timing of cranioplasty remains uncertain.

    OBJECTIVE: We hypothesized that the risk of infections after primary cranioplasty in adult patients who underwent craniectomies for non-infection-related indications are no different when performed early or delayed. We tested this hypothesis in a prospective, multicenter, cohort study.

    METHODS: Data were collected prospectively from 5 neurosurgical centers in the United Kingdom, Malaysia, Singapore, and Bangladesh. Only patients older than 16 years from the time of the non-infection-related craniectomy were included. The recruitment period was over 17 months, and postoperative follow-up was at least 6 months. Patient baseline characteristics, rate of infections, and incidence of hydrocephalus were collected.

    RESULTS: Seventy patients were included in this study. There were 25 patients in the early cranioplasty cohort (cranioplasty performed before 12 weeks) and 45 patients in the late cranioplasty cohort (cranioplasty performed after 12 weeks). The follow-up period ranged between 16 and 34 months (mean, 23 months). Baseline characteristics were largely similar but differed only in prophylactic antibiotics received (P = 0.28), and primary surgeon performing cranioplasty (P = 0.15). There were no infections in the early cranioplasty cohort, whereas 3 infections were recorded in the late cohort. This did not reach statistical significance (P = 0.55).

    CONCLUSIONS: Early cranioplasty in non-infection-related craniectomy is relatively safe. There does not appear to be an added advantage to delaying cranioplasties more than 12 weeks after the initial craniectomy in terms of infection reduction. There was no significant difference in infection rates or risk of hydrocephalus between the early and late cohorts.

    Matched MeSH terms: Decompressive Craniectomy*
  10. Pairan MS, Mohammad N, Abdul Halim S, Wan Ghazali WS
    BMJ Case Rep, 2018 Sep 10;2018.
    PMID: 30206067 DOI: 10.1136/bcr-2018-225265
    We present an interesting case of late-onset intracranial bleeding (ICB) as a complication of Streptococcus gordonii causing infective endocarditis. A previously healthy young woman was diagnosed with infective endocarditis. While she was already on treatment for 2 weeks, she had developed seizures with a localising neurological sign. An urgent non-contrasted CT brain showed massive left frontoparietal intraparenchymal bleeding. Although CT angiogram showed no evidence of active bleeding or contrast blush, massive ICB secondary to vascular complication of infective endocarditis was very likely. An urgent decompressive craniectomy with clot evacuation was done immediately to release the mass effect. She completed total 6 weeks of antibiotics and had postoperative uneventful hospital stay despite having a permanent global aphasia as a sequel of the ICB.
    Matched MeSH terms: Decompressive Craniectomy/methods
  11. Sam JE, Gee TS, Wahab NA
    Asian J Neurosurg, 2018 3 2;13(1):56-58.
    PMID: 29492121 DOI: 10.4103/1793-5482.185056
    Dengue fever has been a major cause of morbidity and mortality in subtropical and tropical countries. We report a rare case of severe dengue with spontaneous intracranial hemorrhage. A search of literature through PubMed revealed that the largest series analyzed so far only included five cases. A 47-year-old man presented with 7 days history of fever, headache, myalgia, and vomiting with hematemesis. On the day of presentation, he had reduced consciousness and an episode of generalized tonic-clonic seizure. His Glasgow Coma Scale was E1V1M3 with anisocoria. Postresuscitation computed tomography of the brain revealed a right subdural and left thalamic hemorrhage. His blood investigations revealed thrombocytopenia, dengue virus type 1 nonstructural protein antigen test was positive, dengue IgM negative, and dengue IgG positive. A right decompressive craniectomy was done. Unfortunately, the patient died soon after. Spontaneous intracranial hemorrhage in patients with dengue fever is an uncommon entity but usually carry a grave prognosis. To date, there has been no clear management guideline for such cases, as both operative and nonoperative approaches have their own inherent risks.
    Matched MeSH terms: Decompressive Craniectomy
  12. Sharda P, Haspani S, Idris Z
    Asian J Neurosurg, 2014 Oct-Dec;9(4):203-12.
    PMID: 25685217 DOI: 10.4103/1793-5482.146605
    OBJECTIVE: The objective of this prospective cohort study was to analyse the characteristics of severe Traumatic Brain Injury (TBI) in a regional trauma centre Hospital Kuala Lumpur (HKL) along with its impact of various prognostic factors post Decompressive Craniectomy (DC).
    MATERIALS AND METHODS: Duration of the study was of 13 months in HKL. 110 consecutive patients undergoing DC and remained in our centre were recruited. They were then analysed categorically with standard analytical software.
    RESULTS: Age group have highest range between 12-30 category with male preponderance. Common mechanism of injury was motor vehicle accident involving motorcyclist. Univariate analysis showed statistically significant in referral area (P = 0.006). In clinical evaluation statistically significant was the motor score (P = 0.040), pupillary state (P = 0.010), blood pressure stability (P = 0.013) and evidence of Diabetes Insipidus (P < 0.001). In biochemical status the significant statistics included evidence of coagulopathy (P < 0.001), evidence of acidosis (P = 0.003) and evidence of hypoxia (P = 0.030). In Radiological sector, significant univariate analysis proved in location of the subdural clot (P < 0.010), location of the contusion (P = 0.045), site of existence of both type of clots (P = 0.031) and the evidence of edema (P = 0.041). The timing of injury was noted to be significant as well (P = 0.061). In the post operative care was, there were significance in the overall stability in intensive care (P < 0.001), the stability of blood pressure, cerebral perfusion pressure, pulse rates and oxygen saturation (all P < 0.001)seen individually, post operative ICP monitoring in the immediate (P = 0.002), within 24 hours (P < 0.001) and within 24-48 hours (P < 0.001) period, along with post operative pupillary size (P < 0.001) and motor score (P < 0.001). Post operatively, radiologically significant statistics included evidence of midline shift post operatively in the CT scan (P < 0.001). Multivariate logistic regression with stepwise likelihood ratio (LR) method concluded that hypoxia post operatively (P = 0.152), the unmaintained Cerebral Perfusion Pressure (CPP) (P = 0.007) and unstable blood pressure (BP) (P = <0.001). Poor outcome noted 10.2 times higher in post operative hypoxia [OR10.184; 95% CI: 0.424, 244.495]. Odds of having poor outcome if CPP unmaintained was 13.8 times higher [OR: 13.754; CI: 2.050, 92.301]. Highest predictor of poor outcome was the unstable BP, 32 times higher [OR 31.600; CI: 4.530, 220440].
    CONCLUSION: Our series represent both urban and rural population, noted to be the largest series in severe TBI in this region. Severe head injury accounts for significant proportion of neurosurgical admissions, resources with its impact on socio-economic concerns to a growing population like Malaysia. This study concludes that the predictors of outcome in severe TBI post DC were postoperative hypoxia, unmaintained cerebral perfusion pressure and unstable blood pressure as independent predictors of poor outcome. Key words: Decompressive craniectomy, prognostication of decompressive craniectomy, prognostication of severe head injury, prognostication of traumatic brain injury, severe head injury, severe traumatic brain injury, traumatic brain injury.
    KEYWORDS: Decompressive craniectomy; prognostication of decompressive craniectomy; prognostication of severe head injury; prognostication of traumatic brain injury; severe head injury; severe traumatic brain injury; traumatic brain injury
    Matched MeSH terms: Decompressive Craniectomy
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links