Displaying all 8 publications

Abstract:
Sort:
  1. Kamal NAMA, Abdulmalek E, Fakurazi S, Cordova KE, Abdul Rahman MB
    Dalton Trans, 2021 Feb 23;50(7):2375-2386.
    PMID: 33555001 DOI: 10.1039/d1dt00116g
    Chemotherapeutic agents used in treating certain cancer types operate in a non-selective manner tending to accumulate in normal, healthy tissue when high doses are used. To mitigate the toxicity effect resulting from this, there is an urgent need to develop active nano delivery systems capable of regulating optimal doses specifically to cancer cells without harming adjacent normal cells. Herein, we report a versatile nanoparticle - zeolitic imidazolate framework-8 (nZIF-8) - that is loaded with a chemotherapeutic agent (gemcitabine; GEM) and surface-functionalized with an autonomous homing system (Arg-Gly-Asp peptide ligand; RGD) via a straightforward, one-pot solvothermal reaction. Successful functionalization of the surface of nZIF-8 loaded GEM (GEM⊂nZIF-8) with RGD was proven by spectroscopic and electron microscopy techniques. This surface-functionalized nanoparticle (GEM⊂RGD@nZIF-8) exhibited enhanced uptake in human lung cancer cells (A549), compared with non-functionalized GEM⊂nZIF-8. The GEM⊂RGD@nZIF-8, experienced not only efficient uptake within A549, but also induced obvious cytotoxicity (75% at a concentration of 10 μg mL-1) and apoptosis (62%) after 48 h treatment when compared to the nanoparticle absent of the RGD homing system (GEM⊂nZIF-8). Most importantly, this surface-functionalized nanoparticle was more selective towards lung cancer cells (A549) than normal human lung fibroblast cells (MRC-5) with a selectivity index (SI) of 3.98. This work demonstrates a new one-pot strategy for realizing a surface-functionalized zeolitic imidazolate framework that actively targets cancer cells via an autonomous homing peptide system to deliver a chemotherapeutic payload effectively.
    Matched MeSH terms: Deoxycytidine/administration & dosage
  2. Mozar FS, Chowdhury EH
    Curr Drug Deliv, 2015;12(3):333-41.
    PMID: 25600981
    Substantial amount of research has been done in recent decades for the development of nanoparticle systems to selectively deliver drugs to cancer cells for concurrently enhancing and reducing anti-cancer and off-target effects, respectively. pH-sensitive carbonate apatite (CA) was originally developed for efficient and targeted delivery of DNA, siRNA and proteins to various cancer cell lines. Recently, the CA particles were employed to deliver anti-cancer drugs, cyclophosphamide, doxorubicin and methotrexate to cancer cells. Here, we report on the fabrication and characterization of gemcitabine- loaded CA particles, followed by the evaluation of their roles in enhancement of cytotoxicity in two human and one murine breast cancer cell lines. HPLC was performed to measure binding efficiency of the drug to the apatite particles whereas particle size and zeta potential were evaluated to characterize drug/apatite complex. Depending on the initial doses of the drug, its bind binding affinity towards the particles varied from 3.85% to 4.45%. The particle size was found to surprisingly decrease with an increase of the initial drug concentration. In vitro chemosensitivity assay revealed that apatite/drug nanoparticle complexes presented significantly higher cytotoxicity to breast cancer cells compared to free drugs, which could be correlated with the enhanced cellular uptake of the small size drug-loaded particles through endocytosis compared to the passive diffusion of the free drug.
    Matched MeSH terms: Deoxycytidine/administration & dosage
  3. Kamil M, Haron M, Yosuff N, Khalid I, Azman N
    J Coll Physicians Surg Pak, 2010 Jun;20(6):421-2.
    PMID: 20642979 DOI: 06.2010/JCPSP.421422
    A hospital based cross-sectional retrospective study was conducted to determine the frequency of hand foot syndrome (HFS) with Capecitabine as a single agent and in combination with Oxaliplatin. The study included 43 consecutive cases of colorectal carcinoma and conducted from June till December 2008. Patients on palliative care were excluded. SPSS was used for the application of chi-square test, by keeping the level of significance as p < 0.05. Fifteen (34.9%) patients developed HFS, 10 in the single-agent and 5 in the combination group. No significant association of HFS with either regimens was noted (p=0.876).
    Matched MeSH terms: Deoxycytidine/administration & dosage
  4. Kiew LV, Cheong SK, Sidik K, Chung LY
    Int J Pharm, 2010 May 31;391(1-2):212-20.
    PMID: 20214970 DOI: 10.1016/j.ijpharm.2010.03.010
    To enhance the stability of the anticancer drug gemcitabine (2'-deoxy-2',2'-difluorocytidine), it was conjugated to poly-l-glutamic acid (PG-H) via a carbodiimide reaction. The synthesised poly-l-glutamic acid-gemcitabine (PG-G) was purified and characterised by using SDS-PAGE to estimate its molecular weight, HPLC to determine its purity and degree of drug loading, and NMR to elucidate the structure. In vitro aqueous hydrolytic studies showed that the gemcitabine release from the polymeric drug conjugate was pH dependent, and that the conjugation to PG-H improved its stability in human plasma. The release of the bound gemcitabine from PG-G in plasma was mediated by a hydrolytic process. It began with a lag phase, followed by linear release between 12 and 48h, and reached equilibrium at 72h with 51% of the gemcitabine released. In vitro cytotoxicity studies using MCF-7 and MDA-MB-231 human mammary cancer cells, as well as human dermal fibroblasts (HDF), showed that PG-G displayed a lower dose dependent cytotoxic effect with respect to the parent drug gemcitabine. On the other hand, in 4T1 mouse mammary tumour cells, PG-G and gemcitabine showed similar toxicities. Gemcitabine was more than likely released hydrolytically from PG-G and taken up by MCF-7, MDA-MB-231 and HDF, whereas both released gemcitabine and PG-G were taken up by 4T1 to mediate the observed cytotoxicities. The improved stability and extended sustained release profile may render PG-G a potential anticancer prodrug.
    Matched MeSH terms: Deoxycytidine/administration & dosage
  5. Taghizadeh Davoudi E, Ibrahim Noordin M, Kadivar A, Kamalidehghan B, Farjam AS, Akbari Javar H
    Biomed Res Int, 2013;2013:495319.
    PMID: 24288681 DOI: 10.1155/2013/495319
    Gastrointestinal disturbances, such as nausea and vomiting, are considered amongst the main adverse effects associated with oral anticancer drugs due to their fast release in the gastrointestinal tract (GIT). Sustained release formulations with proper release profiles can overcome some side effects of conventional formulations. The current study was designed to prepare sustained release tablets of Capecitabine, which is approved by the Food and Drug Administration (FDA) for the treatment of advanced breast cancer, using hydroxypropyl methylcellulose (HPMC), carbomer934P, sodium alginate, and sodium bicarbonate. Tablets were prepared using the wet granulation method and characterized such that floating lag time, total floating time, hardness, friability, drug content, weight uniformity, and in vitro drug release were investigated. The sustained release tablets showed good hardness and passed the friability test. The tablets' floating lag time was determined to be 30-200 seconds, and it floated more than 24 hours and released the drug for 24 hours. Then, the stability test was done and compared with the initial samples. In conclusion, by adjusting the right ratios of the excipients including release-retarding gel-forming polymers like HPMC K4M, Na alginate, carbomer934P, and sodium bicarbonate, sustained release Capecitabine floating tablet was formulated.
    Matched MeSH terms: Deoxycytidine/administration & dosage
  6. Leow CH, Liam CK
    Respirology, 2005 Nov;10(5):629-35.
    PMID: 16268917
    The aim of the study was to evaluate the response, survival advantage and toxicity profile of gemcitabine-carboplatin combination cytotoxic chemotherapy in patients with locally advanced and metastatic non-small cell lung cancer (NSCLC).
    Matched MeSH terms: Deoxycytidine/administration & dosage
  7. Wu YL, Lee V, Liam CK, Lu S, Park K, Srimuninnimit V, et al.
    Lung Cancer, 2018 12;126:1-8.
    PMID: 30527172 DOI: 10.1016/j.lungcan.2018.10.004
    OBJECTIVE: Patients with advanced non-small-cell lung cancer (NSCLC) with an adenocarcinoma component are recommended to undergo epidermal growth factor receptor (EGFR) mutation testing when being considered for EGFR targeted therapy. We conducted an exploratory analysis to inform the clinical utility of EGFR mutation testing in blood cell-free DNA using the cobas®EGFR Mutation Test v2.

    MATERIALS AND METHODS: Two EGFR mutation tests, a tissue-based assay (cobas® v1) and a tissue- and blood-based assay (cobas® v2) were used to analyze matched biopsy and blood samples (897 paired samples) from three Asian studies of first-line erlotinib with similar intent-to-treat populations. ENSURE was a phase III comparison of erlotinib and gemcitabine/platinum, FASTACT-2 was a phase III study of gemcitabine/platinum plus erlotinib or placebo, and ASPIRATION was a single-arm phase II study of erlotinib. Agreement statistics were evaluated, based on sensitivity and specificity between the two assays in subgroups of patients with increasing tumor burden.

    RESULTS: Patients with discordant EGFR (tissue+/plasma-) mutation status achieved longer progression-free and overall survival than those with concordant (tissue+/plasma+) mutation status. Tumor burden was significantly greater in patients with concordant versus discordant mutations. Pooled analyses of data from the three studies showed a sensitivity of 72.1% (95% confidence interval [CI] 67.8-76.1) and a specificity of 97.9% (95% CI 96.0-99.0) for blood-based testing; sensitivity was greatest in patients with larger baseline tumors.

    CONCLUSIONS: Blood-based EGFR mutation testing demonstrated high specificity and good sensitivity, and offers a convenient and easily accessible diagnostic method to complement tissue-based tests. Patients with a discordant mutation status in plasma and tissue, had improved survival outcomes compared with those with a concordant mutation status, which may be due to their lower tumor burden. These data help to inform the clinical utility of this blood-based assay for the detection of EGFR mutations.

    Matched MeSH terms: Deoxycytidine/administration & dosage
  8. Hassan BA, Yusoff ZB, Hassali MA, Othman SB, Weiderpass E
    Asian Pac J Cancer Prev, 2012;13(9):4373-8.
    PMID: 23167346
    INTRODUCTION: Hypercalcemia is mainly caused by bone resorption due to either secretion of cytokines including parathyroid hormone-related protein (PTHrP) or bone metastases. However, hypercalcemia may occur in patients with or without bone metastases. The present study aimed to describe the effect of chemotherapy treatment, regimens and doses on calcium levels among breast and lung cancer patients with hypercalcemia.

    METHODS: We carried a review of medical records of breast and lung cancer patients hospitalized in years 2003 and 2009 at Penang General Hospital, a public tertiary care center in Penang Island, north of Malaysia. Patients with hypercalcemia (defined as a calcium level above 10.5 mg/dl) at the time of cancer diagnosis or during cancer treatment had their medical history abstracted, including presence of metastasis, chemotherapy types and doses, calcium levels throughout cancer treatment, and other co-morbidity. The mean calcium levels at first hospitalization before chemotherapy were compared with calcium levels at the end of or at the latest chemotherapy treatment. Statistical analysis was conducted using the Chi-square test for categorical data, logistic regression test for categorical variables, and Spearman correlation test, linear regression and the paired sample t tests for continuous data.

    RESULTS: Of a total 1,023 of breast cancer and 814 lung cancer patients identified, 292 had hypercalcemia at first hospitalization or during cancer treatment (174 breast and 118 lung cancer patients). About a quarter of these patients had advanced stage cancers: 26.4% had mild hypercalcemia (10.5-11.9 mg/dl), 55.5% had moderate (12-12.9 mg/dl), and 18.2% severe hypercalcemia (13-13.9; 14-16 mg/dl). Chemotherapy lowered calcium levels significantly both in breast and lung cancer patients with hypercalcemia; in particular with chemotherapy type 5-flurouracil+epirubicin+cyclophosphamide (FEC) for breast cancer, and gemcitabine+cisplatin in lung cancer.

    CONCLUSION: Chemotherapy decreases calcium levels in breast and lung cancer cases with hypercalcemia at cancer diagnosis, probably by reducing PTHrP levels.

    Matched MeSH terms: Deoxycytidine/administration & dosage
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links