Displaying all 8 publications

Abstract:
Sort:
  1. Teddy, T., Irwan, J.M., Othman, N.
    MyJurnal
    Strength and durability are important characteristics of concrete and desired engineering properties. Exposure to aggressive environment threatens durability of concrete. Previous studies on bio-concrete using several types of bacteria, including sulphate reduction bacteria (SRB), had to increase durability of concrete have shown promising results. This study used mixtures designed according to concrete requirement for sea water condition with SRB composition of 3%, 5% and 7% respectively. The curing time were 28, 56 and 90 days respectively. The mechanical properties, namely compressive strength and water permeability, were tested using cube samples. The results showed compressive strength had higher increase than the control at 53.9 Mpa. The SRB with 3%composition had maximum water permeability. Thus, adding SRB in concrete specimens improves compressive strength and water permeability. This is particularly suitable for applications using chloride ion penetration (sea water condition) where corrosion tends to affect durability of concrete constructions.
    Matched MeSH terms: Desulfovibrio
  2. Fathul Karim Sahrani, Madzlan Abd. Aziz, Zaharah Ibrahim, Adibah Yahya
    The corrosion potential of AISI 304 stainless steel coupons influenced by sulphate-reducing bacteria (SRB) has been studied. Pure colony of SRB was isolated from the Malaysia Marine and Heavy Engineering, Pasir Gudang, Johor. Open circuit potential measurements were carried out in variable types of culturing solutions with SRB1, SRB2, combination of SRB1 & SRB2 and without SRBs inoculated. Results showed that the corrosion potential, Eoc increased in the presence of SRBs (in pure and mixed culture) compared to that of control. EDS analysis showed the strong peak of sulphur in coupon containing SRB cultures compared to the control. ESEM data showed that the high density cell of SRBs were associated with corroding sections of surface steel comparing with non-corroding sections for coupons immersed in VMNI medium containing SRBs.
    Matched MeSH terms: Desulfovibrio
  3. Fathul Karim Sahrani, Zaharah Ibrahim, Madzlan Aziz, Adibah Yahya
    Corrosion caused by sulphate-reducing bacteria (SRB) isolated from seawater nearby to Pasir Gudang has been studied. The test coupon was a AISI 304 stainless steel. Potential and corrosion rate measurements were carried out in various types of culturing solutions, with SRB1, SRB2, combination of SRB1 & SRB2 and without SRBs inoculated (sterilized). From Tafel plots a higher corrosion rate has been found in medium inoculated with SRBs than that of the sterilized medium (control). When SRBs were present in the medium, the Tafel plot shifted towards more negative values (Ecorr was shifted to much less anodic values) and increase in current density compared to that of the sterilized medium (control). Localized corrosion was observed on the metal surface, and it was associated to the SRB activity. X-ray analysis (EDAX) showed that the corrosion product has higher content of sulphur for medium containing SRBs than that of the sterilized medium. X-Ray Diffraction analysis carried out on corrosion products which showed the presence of iron sulphide. This indicates the influence of the presence of SRB in corrosion process.
    Matched MeSH terms: Desulfovibrio
  4. Nur Akma Mahat, Norinsan Kamil Othman, Mohd Nazri Idris, Fathul Karim Sahrani
    Sains Malaysiana, 2015;44:1587-1591.
    The efficiency of cetyltrimethylammonium bromide (CTAB) to reduce the activity of consortium bacteria consisting of
    sulphate-reducing bacteria (C-SRB) has been investigated on variable concentration by weight loss test, potentiodynamic
    polarization and diffusion disk methods. C-SRB was isolated from tropical crude oil of Malaysian offshore. Biofilm analysis
    was also evaluated by variable pressure scanning electron microscopy (VPSEM). Weight loss and potentiodynamic
    polarization analyses showed that CTAB is able to inhibit the biocorrosion process and their inhibition efficiency had
    reached to 85 and 65% at 300 ppm CTAB, respectively. Increasing of CTAB efficiency as a function of concentration was
    also supported by diffusion disk analysis. Biofilm analysis showed that less of C-SRB and their metabolic by-product had
    been observed. It was concluded that CTAB was able to reduce the C-SRB activity and prevent biocorrosion process on
    carbon steel surface.
    Matched MeSH terms: Desulfovibrio
  5. Fathul Karim Sahrani, Zaharah Ibrahim, Adibah Yahya, Madzlan Aziz
    Sulphate-reducing bacteria (SRB), implicated in microbiologically influenced corrosion were isolated from the deep subsurface at the vicinity of Pasir Gudang, Johor, Malaysia. Electrochemical impedance spectroscopic (EIS) study was carried out to determine the polarization resistance in various types of culturing solutions, with SRB1, SRB2, combination of SRB1 and SRB2 and without SRBs inoculated (control). EIS results showed that in the presence of SRB1, SRB2 and mixed culture SRB1 and SRB2, polarisation resistance values were 7170, 6370 and 7190 ohms respectively compared to that of control, 92400 ohm. X-ray analysis (EDS) of the specimens indicated high sulphur content in the medium containing SRBs. Localized corrosion was observed on the metal surface which was associated with the SRB activity.
    Matched MeSH terms: Desulfovibrio
  6. Akrima Abu Bakar, Muhammad Khairool Fahmy Mohd Ali, Norhazilan Md. Noor, Nordin Yahaya, Mardhiah Ismail, Ahmad Safuan A. Rashid
    Sains Malaysiana, 2017;46:1323-1331.
    Baram Delta Operation had been producing oil and gas since 1960's and serious pipelines failure was reported in the year of 2005. The final investigation has concluded that one of the species of bacteria that has been identified to cause microbiologically influenced corrosion, specifically known as sulfate reducing bacteria (SRB) was found to be one of the potential contributing factors to the incidents. This work investigates the potential use of ultraviolet (UV) radiation to inhibit the SRB consortium that was cultivated from the crude oil in one of the main trunk lines at Baram Delta Operation, Sarawak, Malaysia. The impact of UV exposure to bio-corrosion conditions on carbon steel coupon in certain samples for 28 days was discussed in this study. The samples were exposed to UV radiation based on variations of parameters, namely: time of UV exposure; and power of UV lamp. The significant changes on the amount of turbidity reading and metal loss of the steel coupon were recorded before and after experiment. The results showed that SRB growth has reduced rapidly for almost 90% after the UV exposure for both parameters as compared to the abiotic samples. Metal loss values were also decreased in certain exposure condition. Additionally, field emission scanning electron microscopy (FESEM) coupled with energy dispersive spectroscopy (EDS) was performed to observe the biofilm layer formed on the metal surface after its exposure to SRB. The evidence suggested that the efficiency of UV treatment against SRB growth could be influenced by the particular factors studied
    Matched MeSH terms: Desulfovibrio
  7. Mohd Nazri Idris, Abdul Razak Daud, Nur Akma Mahat, Mohd Hafizuddin Ab Ghani, Norinsan Kamil Othman, Fathul Karim Sahrani
    Sains Malaysiana, 2015;44:1593-1598.
    The performance of pipeline system used in petroleum industry is crucially declined by natural microbial activities and
    demanding extra operational cost. Requirement on high capability of functional substances is attracting worldwide
    research interest. The aim of this paper was to study the effectiveness of benzyltriethylammonium chloride (BTC) on
    reducing the activity of a consortium bacteria consisting of sulfate-reducing bacteria (C-SRB). C-SRB was isolated from
    tropical crude oil and enumeration of this consortium was measured by viable cell count technique. The effectiveness of
    BTC was calculated from potentiodynamic polarization method and biofilm analysis was performed by scanning electron
    microscope. The viable cell count technique indicated that the maximum growth of C-SRB was approximately 160 trillion
    CFU/mL at 7 days incubation period. BTC was capable of reducing biocorrosion activity due to adsorption process and
    mitigating SRB species. Biofilm analysis has proven that C-SRB activity is minimized due to less presence of bacterial
    growth, extracellular polymeric substances and corrosion product. In conclusion, BTC is capable to inhibit C-SRB activity
    on biocorrosion of carbon steel pipeline.
    Matched MeSH terms: Desulfovibrio
  8. Moorthy M, Sundralingam U, Palanisamy UD
    Foods, 2021 Feb 02;10(2).
    PMID: 33540692 DOI: 10.3390/foods10020299
    Obesity is a disease growing at an alarming rate and numerous preclinical studies have proven the role of polyphenols in managing this disease. This systematic review explores the prebiotic effect of polyphenols in the management of obesity among animals fed on a high-fat diet. A literature search was carried out in PubMed, Scopus, CINAHL, Web of Science, and Embase databases following the PRISMA guidelines. Forty-four studies reported a significant reduction in obesity-related parameters. Most notably, 83% of the studies showed a decrease in either body weight/visceral adiposity/plasma triacylglyceride. Furthermore, 42 studies reported a significant improvement in gut microbiota (GM), significantly affecting the genera Akkermansia, Bacteroides, Blautia, Roseburia, Bifidobacteria, Lactobacillus, Alistipes, and Desulfovibrio. Polyphenols' anti-obesity, anti-hyperglycaemic, and anti-inflammatory properties were associated with their ability to modulate GM. This review supports the notion of polyphenols as effective prebiotics in ameliorating HFD-induced metabolic derangements in animal models.
    Matched MeSH terms: Desulfovibrio
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links