METHODS: The petroleum ether, chloroform and methanol extracts of F. deltoidea were prepared and subjected to standardization using preliminary phytochemical and HPLC analysis. Dose selection was made on the basis of acute oral toxicity study (50-5000 mg/kg b. w.) as per OECD guidelines. Diabetes mellitus was induced with streptozotocin and rats found diabetic were orally administered with the extract (250, 500 and 1000 mg/kg) for 14 days. Levels of blood glucose and insulin were measured in control as well as diabetic rats on 0, 7 and 14th day. In addition, glucose metabolism regulating gene expression was assessed using RT-PCR.
RESULTS: HPLC analysis revealed that the methanol extract is enriched with C-glycosylflavones particularly, vitexin and isovitexin. In oral glucose tolerance test, oral administration of the methanol extract increased the glucose tolerance. The methanol extract showed significant (P
OBJECTIVES: To investigate the effect of metformin on the expression of testicular steroidogenesis-related genes, spermatogenesis, and fertility of male diabetic rats.
MATERIALS AND METHODS: Eighteen adult male Sprague Dawley rats were divided into three groups, namely normal control (NC), diabetic control (DC), and metformin-treated (300 mg/kg body weight/day) diabetic rats (D+Met). Diabetes was induced using a single intraperitoneal injection of streptozotocin (60 mg/kg b.w.), followed by oral treatment with metformin for four weeks.
RESULTS: Diabetes decreased serum and intratesticular testosterone levels and increased serum but not intratesticular levels of luteinizing hormone. Sperm count, motility, viability, and normal morphology were decreased, while sperm nuclear DNA fragmentation was increased in DC group, relative to NC group. Testicular mRNA levels of androgen receptor, luteinizing hormone receptor, cytochrome P450 enzyme (CYP11A1), steroidogenic acute regulatory (StAR) protein, 3β-hydroxysteroid dehydrogenase (HSD), and 17β-HSD, as well as the level of StAR protein and activities of CYP11A1, 3β-HSD, and 17β-HSD, were decreased in DC group. Similarly, decreased activities of epididymal antioxidant enzymes and increased lipid peroxidation were observed in DC group. Consequently, decreased litter size, fetal weight, mating and fertility indices, and increased pre- and post-implantation losses were recorded in DC group. Following intervention with metformin, we observed increases in serum and intratesticular testosterone levels, Leydig cell count, improved sperm parameters, and decreased sperm nuclear DNA fragmentation. Furthermore, mRNA levels and activities of steroidogenesis-related enzymes were increased, with improved fertility outcome.
DISCUSSION AND CONCLUSION: Diabetes mellitus is associated with dysregulation of steroidogenesis, abnormal spermatogenesis, and fertility decline. Controlling hyperglycemia is therefore crucial in preserving male reproductive function. Metformin not only regulates blood glucose level, but also preserves male fertility in diabetic state.
METHODS: Blood and pancreas were collected from adult male diabetic rats receiving 28days treatment with VVSAE orally. Fasting blood glucose (FBG), glycated hemoglobin (HbA1c), insulin and lipid profile levels and activity levels of anti-oxidative enzymes (superoxide dismutase-SOD, catalase-CAT and glutathione peroxidase-GPx) in the pancreas were determined by biochemical assays. Histopathological changes in the pancreas were examined under light microscopy and levels of insulin, glucose transporter (GLUT)-2, tumor necrosis factor (TNF)-α, Ikkβ and caspase-3 mRNA and protein were analyzed by real-time PCR (qPCR) and immunohistochemistry respectively. Radical scavenging activity of VVSAE was evaluated by in-vitro anti-oxidant assay while gas chromatography-mass spectrometry (GC-MS) was used to identify the major compounds in the extract.
RESULTS: GC-MS analyses indicated the presence of compounds that might exert anti-oxidative, anti-inflammatory and anti-apoptosis effects. Near normal FBG, HbAIc, lipid profile and serum insulin levels with lesser signs of pancreatic destruction were observed following administration of VVSAE to diabetic rats. Higher insulin, GLUT-2, SOD, CAT and GPx levels but lower TNF-α, Ikkβ and caspase-3 levels were also observed in the pancreas of VVSAE-treated diabetic rats (p<0.05 compared to non-treated diabetic rats). The extract possesses high in-vitro radical scavenging activities.
CONCLUSION: In conclusions, administration of VVSAE to diabetic rats could help to protect the pancreas against oxidative stress, inflammation and apoptosis-induced damage while preserving pancreatic function near normal in diabetes.