Displaying all 5 publications

Abstract:
Sort:
  1. Wong MY, Smart CD
    Plant Dis, 2012 Sep;96(9):1365-1371.
    PMID: 30727148 DOI: 10.1094/PDIS-07-11-0593-SR
    A DNA macroarray was previously developed to detect major fungal and oomycete pathogens of solanaceous crops. To provide a convenient alternative for researchers with no access to X-ray film-developing facilities, specific CCD cameras or Chemidoc XRS systems, a chromogenic detection method with sensitivity comparable with chemiluminescent detection, has been developed. A fungal (Stemphylium solani) and an oomycete (Phytophthora capsici) pathogen were used to develop the protocol using digoxigenin (DIG)-labeled targets. The internal transcribed spacer (ITS) region of the nuclear ribosomal DNA (rDNA), including ITS1, 5.8S rDNA, and ITS2, was used as the target gene and polymerase chain reaction amplified as in the previous protocol. Various amounts of species-specific oligonucleotides on the array, quantities of DIG-labeled ITS amplicon, and hybridization temperatures were tested. The optimal conditions for hybridization were 55°C for 2 h using at least 10 pmol of each species-specific oligonucleotide and labeled target at 10 ng/ml of hybridization buffer. Incubation of the hybridized array with anti-DIG conjugated alkaline phosphatase substrates, NBT/BCIP, produced visible target signals between 1 and 3 h compared with 1 h in chemiluminescent detection. Samples from pure cultures, soil, and artificially inoculated plants were also used to compare the detection using chemiluminescent and chromogenic methods. Chromogenic detection was shown to yield similar results compared with chemiluminescent detection in regard to signal specificity, duration of hybridization between the array and targets, and cost, though it takes 1 to 2 h longer for the visualization process, thus providing a convenient alternative for researchers who lack darkroom facilities. To our knowledge, this is the first report of DNA macroarray detection of plant pathogens using a chromogenic method.
    Matched MeSH terms: Digoxigenin
  2. Permeen AM, Sam CK, Pathmanathan R, Prasad U, Wolf H
    J Virol Methods, 1990 Mar;27(3):261-7.
    PMID: 2157729
    The presence of Epstein Barr virus (EBV) DNA in biopsies from the post-nasal space (PNS) of patients suspected of nasopharyngeal carcinoma (NPC) was detected by in situ cytohybridization with an EBV DNA probe labelled with the novel labelling compound digoxigenin. The digoxigenin probe was hybridised to cryostat sections of NPC biopsies and subsequently detected by an enzyme immunoassay procedure. It was found that in situ cytohybridization using the digoxigenin probe was much more rapid and sensitive (96 h compared to five weeks) than the current method of using 3H-labelled probe. Using the digoxigenin EBV probe, it was found that in all the eighteen NPC biopsies tested, EBV DNA was detected in malignant epithelial cells and infiltrating lymphocytes. EBV DNA was also detected in some normal epithelial cells in these NPC biopsies. EBV DNA was not detected in epithelial cells of non-malignant biopsies.
    Matched MeSH terms: Digoxigenin*
  3. Fucharoen S, Fucharoen G, Ata K, Aziz S, Hashim S, Hassan K, et al.
    Acta Haematol., 1990;84(2):82-8.
    PMID: 2120891 DOI: 10.1159/000205034
    The spectrum of beta-thalassemia mutations in Malaysia has been determined in 45 beta-thalassemia chromosomes using dot blot hybridization of the polymerase chain reaction amplified DNA and direct DNA sequencing. Eleven different molecular defects, including those previously detected in Chinese, Asian Indians, and American blacks, and a novel frameshift mutation causing beta zero-thalassemia were detected. Since this novel mutation, a T deletion in codon 15 creates a new restriction site for EcoRII enzyme; the mutation could be detected by EcoRII digestion of the appropriate amplified fragment. The results of the present study provide additional information on the molecular heterogeneity of beta-thalassemia in this population. We also demonstrated the nonradioactive detection method of the beta-thalassemia mutation based upon the digoxigenin-labeled oligonucleotide probes.
    Matched MeSH terms: Digoxigenin
  4. Tang KF, Pantoja CR, Redman RM, Han JE, Tran LH, Lightner DV
    J Invertebr Pathol, 2015 Sep;130:37-41.
    PMID: 26146228 DOI: 10.1016/j.jip.2015.06.009
    A microsporidian parasite, Enterocytozoon hepatopenaei (abbreviated as EHP), is an emerging pathogen for penaeid shrimp. EHP has been found in several shrimp farming countries in Asia including Vietnam, Thailand, Malaysia, Indonesia and China, and is reported to be associated with growth retardation in farmed shrimp. We examined the histological features from infected shrimp collected from Vietnam and Brunei, these include the presence of basophilic inclusions in the hepatopancreas tubule epithelial cells, in which EHP is found at various developmental stages, ranging from plasmodia to mature spores. By a PCR targeting the 18S rRNA gene, a 1.1kb 18S rRNA gene fragment of EHP was amplified, and this sequence showed a 100% identity to EHP found in Thailand and China. This fragment was cloned and labeled with digoxigenin-11-dUTP, and in situ hybridized to tissue sections of infected Penaeus vannamei (from Vietnam) and P. stylirostris (Brunei). The results of in situ hybridization were specific, the probe only reacted to the EHP within the cytoplasmic inclusions, not to a Pleistophora-like microsporidium that is associated with cotton shrimp disease. Subsequently, we developed a PCR assay from this 18S rRNA gene region, this PCR is shown to be specific to EHP, did not react to 2 other parasitic pathogens, an amoeba and the cotton shrimp disease microsporidium, nor to genomic DNA of various crustaceans including polychaetes, squids, crabs and krill. EHP was detected, through PCR, in hepatopancreatic tissue, feces and water sampled from infected shrimp tanks, and in some samples of Artemia biomass.
    Matched MeSH terms: Digoxigenin
  5. Yadav M, Arivananthan M, Chandrashekran A, Tan BS, Hashim BY
    J Oral Pathol Med, 1997 Oct;26(9):393-401.
    PMID: 9385576
    Archival oral tissues comprising 51 squamous cell carcinomas, 18 non-malignant lesions and 7 normal mucosa samples were investigated for human herpesvirus-6 (HHV-6)-encoded antigens and HHV-6 DNA. The virus-specific antigens were detected by an immunohistochemical method using monoclonal antibodies. Two further techniques used for HHV-6 DNA detection included the polymerase chain reaction (PCR) with virus-specific primers and in situ hybridization using digoxigenin-labelled oligonucleotides specific for HHV-6A and HHV-6B genotypes. A high proportion (79-80%) of the squamous cell carcinomas were positive for HHV-6 with the various detection methods. In cases of lichen planus and leukoplakia a high prevalence rate (67-100%) was noted with in situ hybridization and immunohistochemical techniques but a lower proportion (22-33%) was detected with the PCR method. All 7 normal tissues tested were negative for HHV-6. The HHV-6 variant B was found in 60% of the oral carcinoma tissues analysed. The study demonstrates the frequent presence of HHV-6 in neoplastic and non-malignant lesions of the oral cavity. While the role of HHV-6 in oral mucosal tissues remains to be determined, the in vitro tumorigenic potential of the virus suggests a possible role in the etiopathogenesis of oral lesions.
    Matched MeSH terms: Digoxigenin
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links