Displaying all 4 publications

Abstract:
Sort:
  1. Duong CN, Ra JS, Cho J, Kim SD, Choi HK, Park JH, et al.
    Chemosphere, 2010 Jan;78(3):286-93.
    PMID: 19931116 DOI: 10.1016/j.chemosphere.2009.10.048
    The effects of treatment processes on estrogenicity were evaluated by examining estradiol equivalent (EEQ) concentrations in influents and effluents of sewage treatment plants (STPs) located along Yeongsan and Seomjin rivers in Korea. The occurrence and distribution of estrogenic chemicals were also estimated for surface water in Korea and compared with seven other Asian countries including Laos, Cambodia, Vietnam, China, Indonesia, Thailand and Malaysia. Target compounds were nonylphenol (NP), octylphenol (OP), bisphenol A (BPA), estrone (E1), 17beta-estradiol (E2), 17alpha-ethynylestradiol (EE2) and genistein (Gen). Water samples were pretreated and analyzed by liquid-liquid extraction (LLE) and gas chromatography/mass spectrometry (GC/MS). The results showed that the treatment processes of Korean STPs were sufficient to reduce the estrogenic activity of municipal wastewater. The concentrations of phenolic xenoestrogens (i.e., NP, OP and BPA) in samples of Yeongsan and Seomjin rivers were smaller than those reported by previous studies in Korea. In most samples taken from the seven Asian countries, the presence of E2 and EE2 was a major contributor toward estrogenic activity. The EEQ concentrations in surface water samples of the seven Asian countries were at a higher level in comparison to that reported in European countries, America and Japan. However, further studies with more sampling frequencies and sampling areas should be carried out for better evaluation of the occurrence and distribution of estrogenic compounds in these Asian countries.
    Matched MeSH terms: Estradiol/chemistry; Ethinyl Estradiol/chemistry
  2. Karim S, Bae S, Greenwood D, Hanna K, Singhal N
    Water Res, 2017 11 15;125:32-41.
    PMID: 28826034 DOI: 10.1016/j.watres.2017.08.029
    The catalytic properties of nanoparticles (e.g., nano zero valent iron, nZVI) have been used to effectively treat a wide range of environmental contaminants. Emerging contaminants such as endocrine disrupting chemicals (EDCs) are susceptible to degradation by nanoparticles. Despite extensive investigations, questions remain on the transformation mechanism on the nZVI surface under different environmental conditions (redox and pH). Furthermore, in terms of the large-scale requirement for nanomaterials in field applications, the effect of polymer-stabilization used by commercial vendors on the above processes is unclear. To address these factors, we investigated the degradation of a model EDC, the steroidal estrogen 17α-ethinylestradiol (EE2), by commercially sourced nZVI at pH 3, 5 and 7 under different oxygen conditions. Following the use of radical scavengers, an assessment of the EE2 transformation products shows that under nitrogen purging direct reduction of EE2 by nZVI occurred at all pHs. The radicals transforming EE2 in the absence of purging and upon air purging were similar for a given pH, but the dominant radical varied with pH. Upon air purging, EE2 was transformed by the same radical species as the non-purged system at the same respective pH, but the degradation rate was lower with more oxygen - most likely due to faster nZVI oxidation upon aeration, coupled with radical scavenging. The dominant radicals were OH at pH 3 and O2- at pH 5, and while neither radical was involved at pH 7, no conclusive inferences could be made on the actual radical involved at pH 7. Similar transformation products were observed without purging and upon air purging.
    Matched MeSH terms: Ethinyl Estradiol/chemistry*
  3. Aris AZ, Shamsuddin AS, Praveena SM
    Environ Int, 2014 Aug;69:104-19.
    PMID: 24825791 DOI: 10.1016/j.envint.2014.04.011
    17α-ethynylestradiol (EE2) is a synthetic hormone, which is a derivative of the natural hormone, estradiol (E2). EE2 is an orally bio-active estrogen, and is one of the most commonly used medications for humans as well as livestock and aquaculture activity. EE2 has become a widespread problem in the environment due to its high resistance to the process of degradation and its tendency to (i) absorb organic matter, (ii) accumulate in sediment and (iii) concentrate in biota. Numerous studies have reported the ability of EE2 to alter sex determination, delay sexual maturity, and decrease the secondary sexual characteristics of exposed organisms even at a low concentration (ng/L) by mimicking its natural analogue, 17β-estradiol (E2). Thus, the aim of this review is to provide an overview of the science regarding EE2, the concentration levels in the environment (water, sediment and biota) and summarize the effects of this compound on exposed biota at various concentrations, stage life, sex, and species. The challenges in respect of EE2 include the extension of the limited database on the EE2 pollution profile in the environment, its fate and transport mechanism, as well as the exposure level of EE2 for better prediction and definition revision of EE2 toxicity end points, notably for the purpose of environmental risk assessment.
    Matched MeSH terms: Ethinyl Estradiol/chemistry
  4. Shah SA, Sultan S, Hassan NB, Muhammad FK, Faridz MA, Hussain FB, et al.
    Steroids, 2013 Dec 20;78(14):1312-24.
    PMID: 24135562 DOI: 10.1016/j.steroids.2013.10.001
    Structural modification of steroids through whole-cell biocatalysis is an invaluable procedure for the production of active pharmaceutical ingredients (APIs) and key intermediates. Modifications could be carried out with regio- and stereospecificity at positions hardly available for chemical agents. Much attention has been focused recently on the biotransformation of 17α-ethynyl substituted steroidal drugs using fungi, bacteria and plant cell cultures in order to obtained novel biologically active compounds with diverse structure features. Present article includes studies on biotransformation on 17α-ethynyl substituted steroidal drugs using microorganisms and plant cell cultures. Various experimental and structural elucidation methods used in biotransformational processes are also highlighted.
    Matched MeSH terms: Ethinyl Estradiol/chemistry
Filters
Contact Us

Please provide feedback to Administrator (tengcl@gmail.com)

External Links