Displaying all 6 publications

Abstract:
Sort:
  1. Ngah NA, Ratnayake J, Cooper PR, Dias GJ, Tong DC, Mohd Noor SNF, et al.
    Molecules, 2021 Jan 20;26(3).
    PMID: 33498167 DOI: 10.3390/molecules26030517
    OBJECTIVE: The use of platelet concentrates (PCs) in oral and maxillofacial surgery, periodontology, and craniofacial surgery has been reported. While PCs provide a rich reservoir of autologous bioactive growth factors for tissue regeneration, their drawbacks include lack of utility for long-term application, low elastic modulus and strength, and limited storage capability. These issues restrict their broader application. This review focuses on the lyophilization of PCs (LPCs) and how this processing approach affects their biological and mechanical properties for application as a bioactive scaffold for craniofacial tissue regeneration.

    MATERIALS AND METHODS: A comprehensive search of five electronic databases, including Medline, PubMed, EMBASE, Web of Science, and Scopus, was conducted from 1946 until 2019 using a combination of search terms relating to this topic.

    RESULTS: Ten manuscripts were identified as being relevant. The use of LPCs was mostly studied in in vitro and in vivo craniofacial bone regeneration models. Notably, one clinical study reported the utility of LPCs for guided bone regeneration prior to dental implant placement.

    CONCLUSIONS: Lyophilization can enhance the inherent characteristics of PCs and extends shelf-life, enable their use in emergency surgery, and improve storage and transportation capabilities. In light of this, further preclinical studies and clinical trials are required, as LPCs offer a potential approach for clinical application in craniofacial tissue regeneration.

    Matched MeSH terms: Fibrin/chemistry
  2. Mohammed Shafit H, Williams SK
    Poult Sci, 2010 Mar;89(3):594-602.
    PMID: 20181879 DOI: 10.3382/ps.2009-00412
    Research was conducted to manufacture and evaluate a restructured turkey breast product using the Fibrimex cold-set binding system, sodium diacetate (NaD), and sodium lactate (NaL) and to ascertain effects of the treatments on proximate composition, pH, psychrotrophic organisms, water activity, onset of rancidity (TBA), thaw loss, cooking yields, and objective color, and sensory characteristics. Whole turkey breasts were cut into 5-cm-thick strips; treated with either water only (control), 1.5% NaL, 2.0% NaL, 0.1% NaD, 1.5% NaL + 0.1% NaD, or 2.0% NaL + 0.1% NaD; blended with Fibrimex ingredients; stuffed into casings; and stored at -30 degrees C for 0, 1, 2, and 3 mo. After each storage period, frozen chubs were tempered at 4 degrees C, sliced into 1-cm-thick steaks, packaged in retail trays, stored at 0 degrees C to simulate retail storage, and analyzed after 0, 2, 4, 6, 8, and 10 d. Sodium diacetate used alone or in combination with NaL reduced (P < 0.05) growth of psychrotrophic organisms and had no adverse effects on water activity, pH, cooking yield, fat, moisture, protein, objective color, onset of rancidity, and sensory characteristics (juiciness, turkey flavor intensity, and tenderness). Panelists reported slight off-flavor in all steaks treated with NaL. Treating steaks with NaL alone or in combination with NaD resulted in increased (P < 0.05) ash content. Sodium lactate also functioned to minimize thaw loss in the frozen restructured turkey product.
    Matched MeSH terms: Fibrin/chemistry*
  3. Salem SA, Hwei NM, Bin Saim A, Ho CC, Sagap I, Singh R, et al.
    J Biomed Mater Res A, 2013 Aug;101(8):2237-47.
    PMID: 23349110 DOI: 10.1002/jbm.a.34518
    The chief obstacle for reconstructing the bladder is the absence of a biomaterial, either permanent or biodegradable, that will function as a suitable scaffold for the natural process of regeneration. In this study, polylactic-co-glycolic acid (PLGA) plus collagen or fibrin was evaluated for its suitability as a scaffold for urinary bladder construct. Human adipose-derived stem cells (HADSCs) were cultured, followed by incubation in smooth muscle cells differentiation media. Differentiated HADSCs were then seeded onto PLGA mesh supported with collagen or fibrin. Evaluation of cell-seeded PLGA composite immersed in culture medium was performed under a light and scanning microscope. To determine if the composite is compatible with the urodynamic properties of urinary bladder, porosity and leaking test was performed. The PLGA samples were subjected to tensile testing was pulled until PLGA fibers break. The results showed that the PLGA composite is biocompatible to differentiated HADSCs. PLGA-collagen mesh appeared to be optimal as a cell carrier while the three-layered PLGA-fibrin composite is better in relation to its leaking/ porosity property. A biomechanical test was also performed for three-layered PLGA with biological adhesive and three-layered PLGA alone. The tensile stress at failure was 30.82 ± 3.80 (MPa) and 34.36 ± 2.57 (MPa), respectively. Maximum tensile strain at failure was 19.42 ± 2.24 (mm) and 23.06 ± 2.47 (mm), respectively. Young's modulus was 0.035 ± 0.0083 and 0.043 ± 0.012, respectively. The maximum load at break was 58.55 ± 7.90 (N) and 65.29 ± 4.89 (N), respectively. In conclusion, PLGA-Fibrin fulfils the criteria as a scaffold for urinary bladder reconstruction.
    Matched MeSH terms: Fibrin/chemistry*
  4. Vardar E, Vythilingam G, Pinnagoda K, Engelhardt EM, Zambelli PY, Hubbell JA, et al.
    Biomaterials, 2019 06;206:41-48.
    PMID: 30925287 DOI: 10.1016/j.biomaterials.2019.03.030
    Stress urinary incontinence (SUI) is a life changing condition, affecting 20 million women worldwide. In this study, we developed a bioactive, injectable bulking agent that consists of Permacol™ (Medtronic, Switzerland) and recombinant insulin like growth factor-1 conjugated fibrin micro-beads (fib_rIGF-1) for its bulk stability and capacity to induce muscle regeneration. Therefore, Permacol™ formulations were injected in the submucosal space of rabbit bladders. The ability of a bulking material to form a stable and muscle-inducing bulk represents for us a promising therapeutic approach to achieve a long-lasting treatment for SUI. The fib_rIGF-1 showed no adverse effect on human smooth muscle cell metabolic activity and viability in vitro based on AlamarBlue assays and Live/Dead staining. Three months after injection of fib_rIGF-1 together with Permacol™ into the rabbit bladder wall, we observed a smooth muscle tissue like formation within the injected materials. Positive staining for alpha smooth muscle actin, calponin, and caldesmon demonstrated a contractile phenotype of the newly formed smooth muscle tissue. Moreover, the fib_rIGF-1 treated group also improved the neovascularization at the injection site, confirmed by CD31 positive staining compared to bulks made of PermacolTM only. The results of this study encourage us to further develop this injectable, bioactive bulking material towards a future therapeutic approach for a minimal invasive and long-lasting treatment of SUI.
    Matched MeSH terms: Fibrin/chemistry
  5. Abdul Rahman R, Mohamad Sukri N, Md Nazir N, Ahmad Radzi MA, Zulkifly AH, Che Ahmad A, et al.
    Tissue Cell, 2015 Aug;47(4):420-30.
    PMID: 26100682 DOI: 10.1016/j.tice.2015.06.001
    Articular cartilage is well known for its simple uniqueness of avascular and aneural structure that has limited capacity to heal itself when injured. The use of three dimensional construct in tissue engineering holds great potential in regenerating cartilage defects. This study evaluated the in vitro cartilaginous tissue formation using rabbit's bone marrow mesenchymal stem cells (BMSCs)-seeded onto poly(lactic-co-glycolic acid) PLGA/fibrin and PLGA scaffolds. The in vitro cartilaginous engineered constructs were evaluated by gross inspection, histology, cell proliferation, gene expression and sulphated glycosaminoglycan (sGAG) production at week 1, 2 and 3. After 3 weeks of culture, the PLGA/fibrin construct demonstrated gross features similar to the native tissue with smooth, firm and glistening appearance, superior histoarchitectural and better cartilaginous extracellular matrix compound in concert with the positive glycosaminoglycan accumulation on Alcian blue. Significantly higher cell proliferation in PLGA/fibrin construct was noted at day-7, day-14 and day-21 (p<0.05 respectively). Both constructs expressed the accumulation of collagen type II, collagen type IX, aggrecan and sox9, showed down-regulation of collagen type I as well as produced relative sGAG content with PLGA/fibrin construct exhibited better gene expression in all profiles and showed significantly higher relative sGAG content at each time point (p<0.05). This study suggested that with optimum in vitro manipulation, PLGA/fibrin when seeded with pluripotent non-committed BMSCs has the capability to differentiate into chondrogenic lineage and may serve as a prospective construct to be developed as functional tissue engineered cartilage.
    Matched MeSH terms: Fibrin/chemistry
  6. Sulaiman SB, Keong TK, Cheng CH, Saim AB, Idrus RB
    Indian J Med Res, 2013 Jun;137(6):1093-101.
    PMID: 23852290
    Various materials have been used as scaffolds to suit different demands in tissue engineering. One of the most important criteria is that the scaffold must be biocompatible. This study was carried out to investigate the potential of HA or TCP/HA scaffold seeded with osteogenic induced sheep marrow cells (SMCs) for bone tissue engineering.
    Matched MeSH terms: Fibrin/chemistry
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links