Displaying all 12 publications

Abstract:
Sort:
  1. Chee HY, Sazaly AB
    JUMMEC, 1997;2:27-30.
    Matched MeSH terms: Frameshift Mutation
  2. Balasubramaniam S, Choy YS, Talib A, Norsiah MD, van den Heuvel LP, Rodenburg RJ
    JIMD Rep, 2012;5:113-22.
    PMID: 23430926 DOI: 10.1007/8904_2011_107
    Mitochondrial disorders are a heterogeneous group of often multisystemic and early fatal diseases caused by defects in the oxidative phosphorylation (OXPHOS) system. Given the complexity and intricacy of the OXPHOS system, it is not surprising that the underlying molecular defect remains unidentified in many patients with a mitochondrial disorder. Here, we report the clinical features and diagnostic workup leading to the elucidation of the genetic basis for a combined complex I and IV OXPHOS deficiency secondary to a mitochondrial translational defect in an infant who presented with rapidly progressive liver failure, encephalomyopathy, and severe refractory lactic acidemia. Sequencing of the GFM1 gene revealed two inherited novel, heterozygous mutations: a.539delG (p.Gly180AlafsX11) in exon 4 which resulted in a frameshift mutation, and a second c.688G > A (p.Gly230Ser) mutation in exon 5. This missense mutation is likely to be pathogenic since it affects an amino acid residue that is highly conserved across species and is absent from the dbSNP and 1,000 genomes databases. Review of literature and comparison were made with previously reported cases of this recently identified mitochondrial disorder encoded by a nuclear gene. Although limited in number, nuclear gene defects causing mitochondrial translation abnormalities represent a new, rapidly expanding field of mitochondrial medicine and should potentially be considered in the diagnostic investigation of infants with progressive hepatoencephalomyopathy and combined OXPHOS disorders.
    Matched MeSH terms: Frameshift Mutation
  3. Khoo AS, Balraj P, Rachedi A, Chin CN, Volpi L
    Hum Mutat, 1999 Nov;14(5):448.
    PMID: 10533073
    Matched MeSH terms: Frameshift Mutation
  4. Kusumaningtyas E, Tan WS, Zamrod Z, Eshaghi M, Yusoff K
    Arch Virol, 2004 Sep;149(9):1859-65.
    PMID: 15593426
    Nucleotide sequence comparison of the L gene of the Malaysian neurotropic-viscerotropic velogenic NDV strain AF2240 with other NDV strains revealed a single nucleotide insertion at position 3870. This mutation is compensated by a nucleotide deletion downstream at position 3958 which results in two forms of the L proteins containing a 30-amino acid substitution in Domain V. This compensatory mutation does not correlate with the pathogenicity of the viral strains but it may affect the viral replication as Domain V is believed to play an important role in the replication of paramyxoviruses.
    Matched MeSH terms: Frameshift Mutation*
  5. George E
    PMID: 8629111
    Beta-thalassemia in West Malaysia is caused by 14 molecular defects with differing clinical severity. In Chinese patients from West Malaysia, the main beta-thalassemia mutations seen were (a) a 4 base pair-TCTT deletion in codon 41-42 [frameshift mutation (FSC 41-42)]; (b) a C to T substitution at the second intervening sequence (IVS2-654); (c) an A to G substitution in the TATA box [-28 (A to G)], and (d) an A to T substitution in codon 17[17 A to T]. In the Malays, the main mutations seen were (a) a G to C in nucleotide 5 at the intervening sequence I [IVS1-5 (G to C)]; (b) G to T substitution in nucleotide I at the intervening sequence I [IVS1-1 (G to T)]; (c) a A to T substitution in codon 17 (17 A to T); (d) removal of C from codon 35 [codon 35 (-C)], and (e) a 4 base pairs-TCTT deletion in codon 41-42 [frameshift mutation (FSC 41-42)]. A scoring system (Tha1 CS) has been formulated to predict clinical severity. It is the type of beta-thalassemia mutation present that decides on the clinical phenotype. The most severe beta-thalassemia mutation is assigned a score of 4. A score of 8 indicates severe thalassemia.
    Matched MeSH terms: Frameshift Mutation*
  6. Gitaka JN, Takeda M, Kimura M, Idris ZM, Chan CW, Kongere J, et al.
    Malar J, 2017 03 02;16(1):98.
    PMID: 28253868 DOI: 10.1186/s12936-017-1743-x
    BACKGROUND: Plasmodium falciparum SURFIN4.1is a putative ligand expressed on the merozoite and likely on the infected red blood cell, whose gene was suggested to be under directional selection in the eastern Kenyan population, but under balancing selection in the Thai population. To understand this difference, surf4.1sequences of western Kenyan P. falciparum isolates were analysed. Frameshift mutations and copy number variation (CNV) were also examined for the parasites from western Kenya and Thailand.

    RESULTS: Positively significant departures from neutral expectations were detected on the surf4.1region encoding C-terminus of the variable region 2 (Var2) by 3 population-based tests in the western Kenyan population as similar in the Thai population, which was not covered by the previous analysis for eastern Kenyan population. Significant excess of non-synonymous substitutions per nonsynonymous site over synonymous substitutions per synonymous site was also detected in the Var2 region. Negatively significant departures from neutral expectations was detected on the region encoding Var1 C-terminus consistent to the previous observation in the eastern Kenyan population. Parasites possessing a frameshift mutation resulting a product without intracellular Trp-rich (WR) domains were 22/23 in western Kenya and 22/36 in Thailand. More than one copy of surf4.1gene was detected in western Kenya (4/24), but no CNV was found in Thailand (0/36).

    CONCLUSIONS: The authors infer that the high polymorphism of SURFIN4.1Var2 C-terminus in both Kenyan and Thai populations were shaped-up by diversifying selection and maintained by balancing selection. These phenomena were most likely driven by immunological pressure. Whereas the SURFIN4.1Var1 C-terminus is suggested to be under directional selection consistent to the previous report for the eastern Kenyan population. Most western Kenyan isolates possess a frameshift mutation that would limit the expression of SURFIN4.1on the merozoite, but only 60% of Thai isolates possess this frameshift, which would affect the level and type of the selection pressure against this protein as seen in the two extremities of Tajima's D values for Var1 C-terminus between Kenyan and Thai populations. CNV observed in Kenyan isolates may be a consequence of this frameshift mutation to increase benefits on the merozoite surface.

    Matched MeSH terms: Frameshift Mutation*
  7. Nasuha NA, Daud AH, Ghazali MM, Yusoff AA, Zainuddin N, Abdullah JM, et al.
    Asian J Surg, 2003 Apr;26(2):120-5.
    PMID: 12732498
    A case of pleomorphic xanthoastrocytoma in a 10-year-old Malay boy is reported. The patient presented with headache and epilepsy. On computed tomography, a ring-enhancing low-density lesion was observed in the left fronto-temporal area. During surgery, a cystic tumour containing serous fluid was found and almost totally removed. Histologically, the tumour exhibited marked pleomorphism of oval and spindle-shaped cells intermixed with uni- and multinucleated giant cells, and xanthomatous cells with foamy cytoplasm. The tumour displayed pericellular reticulin and periodic acid-Schiff positive granules. Focally, six mitotic characters per 10 high-power fields were seen, and necrosis was confined only to the inner lining of the cyst. Mutational analysis showed that a frameshift mutation (a 4-bp deletion) in the p53 gene had occurred in codons 273 and 274 of exon 8. No mutation was detected in the p16 gene. No allelic loss and/or loss of heterozygosity were observed on chromosome 10 using microsatellite marker D105532. The patient was treated with postoperative radiotherapy because of histological anaplasia and the presence of residual tumour. The patient showed marked neurological recovery after a follow-up period of 2 years.
    Matched MeSH terms: Frameshift Mutation
  8. Mat Isa N, Mohd Ayob J, Ravi S, Mustapha NA, Ashari KS, Bejo MH, et al.
    Virusdisease, 2019 Sep;30(3):426-432.
    PMID: 31803810 DOI: 10.1007/s13337-019-00530-9
    The main aim of our study was to explore the genome sequence of the inclusion body hepatitis associated Fowl adenovirus serotype 8b (FAdV-8b) UPM04217 and to study its genomic organisation. The nucleotide sequence of the whole genome of FAdV-8b UPM04217 was determined by using the 454 Pyrosequencing platform and the Sanger sequencing method. The complete genome was found to be 44,059 bp long with 57.9% G + C content and shared 97.5% genome identity with the reference FAdV-E genome (HG isolate). Interestingly, the genome analysis using ORF Finder, Glimmer3 and FGENESV predicted a total of 39 open reading frames (ORFs) compared to the FAdV-E HG that possessed 46 ORFs. Fourteen ORFs located within the central genomic region and 16 ORFs located within the left and right ends of the genome were assigned as being the high protein-coding regions. The fusion of the small ORFs at the right end terminal specifically in ORF22 and ORF33 could be the result of gene truncation in the FAdV-E HG. The frame shift mutation in ORF25 and other mutations in ORF13 and ORF17 might have lead to the emergence of genes that could have different functions. Besides, one of the minor capsid components, pVI, in FAdV-8b UPM04217 shared the highest similarity of 93% with that of FAdV-D, while only 47% similarity was found with FAdV-E. From the gene arrangement layout of the FAdV genome, FAdV-8b UPM04217 showed intermediate evolution between the FAdV-E HG and the FAdV-D although it was apparently more similar to the FAdV-E HG.
    Matched MeSH terms: Frameshift Mutation
  9. Yusoff AA, Abdullah J, Abdullah MR, Mohd Ariff AR, Isa MN
    Acta Neurochir (Wien), 2004 Jun;146(6):595-601.
    PMID: 15168228
    Alteration of the tumor suppressor gene p53 is considered to be a critical step in the development of human cancer. Changes in this gene have been detected in a wide range of human tumours, including gliomas. In glioma, the presence of p53 gene alterations has been associated with worse prognosis.
    Matched MeSH terms: Frameshift Mutation/genetics
  10. Miyake N, Fukai R, Ohba C, Chihara T, Miura M, Shimizu H, et al.
    Am J Hum Genet, 2016 Oct 06;99(4):950-961.
    PMID: 27666374 DOI: 10.1016/j.ajhg.2016.08.005
    We describe four families with affected siblings showing unique clinical features: early-onset (before 1 year of age) progressive diffuse brain atrophy with regression, postnatal microcephaly, postnatal growth retardation, muscle weakness/atrophy, and respiratory failure. By whole-exome sequencing, we identified biallelic TBCD mutations in eight affected individuals from the four families. TBCD encodes TBCD (tubulin folding co-factor D), which is one of five tubulin-specific chaperones playing a pivotal role in microtubule assembly in all cells. A total of seven mutations were found: five missense mutations, one nonsense, and one splice site mutation resulting in a frameshift. In vitro cell experiments revealed the impaired binding between most mutant TBCD proteins and ARL2, TBCE, and β-tubulin. The in vivo experiments using olfactory projection neurons in Drosophila melanogaster indicated that the TBCD mutations caused loss of function. The wide range of clinical severity seen in this neurodegenerative encephalopathy may result from the residual function of mutant TBCD proteins. Furthermore, the autopsied brain from one deceased individual showed characteristic neurodegenerative findings: cactus and somatic sprout formations in the residual Purkinje cells in the cerebellum, which are also seen in some diseases associated with mitochondrial impairment. Defects of microtubule formation caused by TBCD mutations may underlie the pathomechanism of this neurodegenerative encephalopathy.
    Matched MeSH terms: Frameshift Mutation/genetics
  11. Balraj P, Ahmad M, Khoo AS, Ayob Y
    Malays J Pathol, 2012 Jun;34(1):67-9.
    PMID: 22870602 MyJurnal
    Haemophilia B is caused by coagulation defects in the factor IX gene located in Xq27.1 on the X chromosome. Identification of mutations contributing to defective factor IX may be advantageous for precise carrier and prenatal diagnosis. We studied 16 patients from 11 families, consisting of 8 patients of the Malay ethnic group, of which 6 were siblings. Factor IX mutations have not been previously reported in the Malay ethnic group. The functional region of the factor IX gene was sequenced and mutations were identified in either the exon or intronic regions in 15 of the patients. One novel mutation, 6660_6664delTTCTT was identified in siblings with moderate form of haemophilia B. Mutations identified in our patients when linked with disease severity were similar to findings in other populations. In summary, this preliminary data will be used to build a Malaysian mutation database which would facilitate genetic counseling.
    Matched MeSH terms: Frameshift Mutation
  12. Nakashima M, Kato M, Matsukura M, Kira R, Ngu LH, Lichtenbelt KD, et al.
    J Hum Genet, 2020 Sep;65(9):727-734.
    PMID: 32341456 DOI: 10.1038/s10038-020-0758-2
    The ubiquitin-proteasome system is the principal system for protein degradation mediated by ubiquitination and is involved in various cellular processes. Cullin-RING ligases (CRL) are one class of E3 ubiquitin ligases that mediate polyubiquitination of specific target proteins, leading to decomposition of the substrate. Cullin 3 (CUL3) is a member of the Cullin family proteins, which act as scaffolds of CRL. Here we describe three cases of global developmental delays, with or without epilepsy, who had de novo CUL3 variants. One missense variant c.854T>C, p.(Val285Ala) and two frameshift variants c.137delG, p.(Arg46Leufs*32) and c.1239del, p.(Asp413Glufs*42) were identified by whole-exome sequencing. The Val285 residue located in the Cullin N-terminal domain and p.Val285Ala CUL3 mutant showed significantly weaker interactions to the BTB domain proteins than wild-type CUL3. Our findings suggest that de novo CUL3 variants may cause structural instability of the CRL complex and impairment of the ubiquitin-proteasome system, leading to diverse neuropsychiatric disorders.
    Matched MeSH terms: Frameshift Mutation
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links