One of the most common types of adulteration of honey involves the addition of invert sugar syrups. A new method was developed to measure the stable isotope ratios of carbon and carbon-bound non-exchangeable (CBNE) hydrogen from specific molecular positions in fructose and glucose in honey. This was achieved through periodate oxidation of the sugars to produce formaldehyde, followed by reaction with ammonia to form hexamethylenetetramine (HMT). The preparation was simplified, optimized, and validated by isotopic analysis of replicate syntheses of HMT from fructose, glucose, sugar syrup and a representative authentic honey sample. The optimized method had a repeatability standard deviation from 1.5‰ to 3.0‰ and from 0.1‰ to 0.4‰ for δ2H and δ13C, respectively. This methodology has advantages over alternative isotopic methods, for measuring CBNE hydrogen isotope ratios in sugars, in terms of time, sensitivity and operability and offers a complementary method to differentiate authentic honey from invert sugar syrups.
The objective of this study was to evaluate the precursors of acrylamide formation in sweet potato (SP) (Ipomoea batatas L. Lam) chips and to determine the effect of different types of vegetable oils (VOs), that is, palm olein, coconut oil, canola oil, and soya bean oil, on acrylamide formation. The reducing sugars and amino acids in the SP slices were analyzed, and the acrylamide concentrations of SP chips were measured. SP chips that were fried in a lower degree of unsaturation oils contained a lower acrylamide concentration (1443 μg/kg), whereas those fried with higher degree of unsaturated oils contained a higher acrylamide concentration (2019 μg/kg). SP roots were found to contain acrylamide precursors, that is, 4.17 mg/g glucose and 5.05 mg/g fructose, and 1.63 mg/g free asparagine. The type of VO and condition used for frying, significantly influenced acrylamide formation. This study clearly indicates that the contribution of lipids in the formation of acrylamide should not be neglected.
Selected soluble sugars and organic acids were analyzed in strawberry, sweet cherry, and mulberry fruits at different ripening stages by HPLC. The amounts of fructose, glucose and sucrose were found to be: strawberry (1.79-2.86, 1.79-2.25 and 0.01-0.25 g/100 g FW), sweet cherry (0.76-2.35, 0.22-3.39 and 0.03-0.13 g/100 g) and mulberry (3.07-9.41, 1.53-4.95 and 0.01-0.25 g/100 g) at un-ripened to fully-ripened stages, respectively. The strawberry, sweet cherry and mulberry mainly contained tartaric, citric and ascorbic acids in the range of 16-55, 70-1934 and 11-132 mg/100 g; 2-8, 2-10 and 10-17 mg/100 g; 2-118, 139-987 and 2-305 mg/100 g at un-ripened to fully-ripened stages, respectively. Fructose and glucose were established to be the major sugars in all the tested fruit while citric and ascorbic acid were the predominant organic acids in strawberry and mulberry while tartaric acid was mainly present in sweet cherry. The tested fruits mostly showed an increase in the concentration of sugars and organic acids with ripening.
The levels of sugars, ascorbic acid, total phenolic content (TPC) and total antioxidant activity (TAA) were determined in fruit juices from seven passion fruit (Passiflora spp.) cultivars: P. edulis cultivars Purple, Frederick, Yellow, Pink, P. edulis f. flavicarpa, P. maliformis and P. quadrangularis (we also tested this cultivar's mesocarp).