Genetic divergence in geographically isolated populations is a prerequisite for allopatric speciation, one of the most common modes of speciation. In ecologically equivalent populations existing within a small, environmentally homogeneous area, an important role for environmentally neutral divergence is often found or inferred. We studied a species complex of conspicuously shaped Opisthostoma land snails on scattered limestone outcrops within a small area of lowland rainforest in Borneo. We used shell morphometrics, mitochondrial and nuclear DNA sequences, and marks of predation to study the factors involved in allopatric divergence. We found that a striking geographic divergence exists in shell morphology, which is partly associated with neutral genetic divergence. We also found geographic differentiation in the behavior of the snails' invertebrate predator and evidence of an evolutionary interaction between aspects of shell shape and predator behavior. Our study shows that adaptation to biotic aspects of the environment may play a more important role in allopatric speciation than previously suspected, even on a geographically very small scale.
The mitochondrial DNA (mtDNA) cytochrome oxidase I (COI) gene has been universally and successfully utilized as a barcoding gene, mainly because it can be amplified easily, applied across a wide range of taxa, and results can be obtained cheaply and quickly. However, in rare cases, the gene can fail to distinguish between species, particularly when exposed to highly sensitive methods of data analysis, such as the Bayesian method, or when taxa have undergone introgressive hybridization, over-splitting, or incomplete lineage sorting. Such cases require the use of alternative markers, and nuclear DNA markers are commonly used. In this study, a dendrogram produced by Bayesian analysis of an mtDNA COI dataset was compared with that of a nuclear DNA ATPS-α dataset, in order to evaluate the efficiency of COI in barcoding Malaysian nerites (Neritidae). In the COI dendrogram, most of the species were in individual clusters, except for two species: Nerita chamaeleon and N. histrio. These two species were placed in the same subcluster, whereas in the ATPS-α dendrogram they were in their own subclusters. Analysis of the ATPS-α gene also placed the two genera of nerites (Nerita and Neritina) in separate clusters, whereas COI gene analysis placed both genera in the same cluster. Therefore, in the case of the Neritidae, the ATPS-α gene is a better barcoding gene than the COI gene.
The genus Cerithideopsis is most common in mangrove and salt marsh habitats of the New World tropics, but there is also a small radiation in the Indo-West Pacific region. Previously, these Indo-Pacific snails have generally been classified as Cerithidea largillierti (Philippi, 1848). Molecular phylogenetic analysis (partial sequences of mitochondrial COI and 16S rRNA, and nuclear 28S rRNA) of 15 specimens from 8 localities between Japan and Australia reveal three clades, among which there are small morphological differences and which show allopatric distributions. Cerithideopsis largillierti sensu stricto is restricted to Japan and China, while the two other species are described as new: C. australiensis occurs in tropical Australasia and C. malayensis is found from Malaysia to Java and the Philippines. All occur on mud and in pools with leaf litter, in the shaded landward and middle zones of mangrove forests, and do not climb the trees. The species accounts include full synonymies, detailed descriptions of shells based on 82 museum samples, descriptions of living animals, distribution records and maps, and notes on habitat and conservation status.