6-Chloro-2-Aryl-1H-imidazo[4,5-b]pyridine derivatives 1-26 were synthesized and characterized by various spectroscopic techniques. All these derivatives were evaluated for their antiglycation, antioxidant and β-glucuronidase potential followed their docking studies. In antiglycation assay, compound 2 (IC50=240.10±2.50μM) and 4 (IC50=240.30±2.90μM) was found to be most active compound of this series, while compounds 3 (IC50=260.10±2.50μM), 6 (IC50=290.60±3.60μM), 13 (IC50=288.20±3.00μM) and 26 (IC50=292.10±3.20μM) also showed better activities than the standard rutin (IC50=294.50±1.50μM). In antioxidant assay, compound 1 (IC50=69.45±0.25μM), 2 (IC50=58.10±2.50μM), 3 (IC50=74.25±1.10μM), and 4 (IC50=72.50±3.30μM) showed good activities. In β-glucuronidase activity, compounds 3 (IC50=29.25±0.50μM), compound 1 (IC50=30.10±0.60μM) and compound 4 (IC50=46.10±1.10μM) showed a significant activity as compared to than standard D-Saccharic acid 1,4-lactonec (IC50=48.50±1.25μM) and their interaction with the enzyme was confirm by docking studies.
Thiadiazole derivatives 1-24 were synthesized via a single step reaction and screened for in vitro β-glucuronidase inhibitory activity. All the synthetic compounds displayed good inhibitory activity in the range of IC50=2.16±0.01-58.06±1.60μM as compare to standard d-saccharic acid 1,4-lactone (IC50=48.4±1.25μM). Molecular docking study was conducted in order to establish the structure-activity relationship (SAR) which demonstrated that thiadiazole as well as both aryl moieties (aryl and N-aryl) involved to exhibit the inhibitory potential. All the synthetic compounds were characterized by spectroscopic techniques (1)H, (13)C NMR, and EIMS.
Chromen-4-one substituted oxadiazole analogs 1-19 have been synthesized, characterized and evaluated for β-glucuronidase inhibition. All analogs exhibited a variable degree of β-glucuronidase inhibitory activity with IC50 values ranging in between 0.8 ± 0.1-42.3 ± 0.8 μM when compared with the standard d-saccharic acid 1,4 lactone (IC50 = 48.1 ± 1.2 μM). Structure activity relationship has been established for all compounds. Molecular docking studies were performed to predict the binding interaction of the compounds with the active site of enzyme.
A series of compounds consisting of 25 novel oxadiazole-benzohydrazone hybrids (6-30) were synthesized through a five-step reaction sequence and evaluated for their β-glucuronidase inhibitory potential. The IC50 values of compounds 6-30 were found to be in the range of 7.14-44.16μM. Compounds 6, 7, 8, 9, 11, 13, 18, and 25 were found to be more potent than d-saccharic acid 1,4-lactone (48.4±1.25μM). These compounds were further subjected for molecular docking studies to confirm the binding mode towards human β-d-glucuronidase active site. Docking study for compound 13 (IC50=7.14±0.30μM) revealed that it adopts a binding mode that fits within the entire pocket of the binding site of β-d-glucuronidase. Compound 13 has the maximum number of hydrogens bonded to the residues of the active site as compared to the other compounds, that is, the ortho-hydroxyl group forms hydrogen bond with carboxyl side chain of Asp207 (2.1Å) and with hydroxyl group of Tyr508 (2.6Å). The other hydroxyl group forms hydrogen bond with His385 side chain (2.8Å), side chain carboxyl oxygen of Glu540 (2.2Å) and Asn450 side-chain's carboxamide NH (2.1Å).