Displaying all 4 publications

Abstract:
Sort:
  1. Ho IYM, Abdul Aziz A, Mat Junit S
    Sci Rep, 2020 06 19;10(1):9987.
    PMID: 32561807 DOI: 10.1038/s41598-020-66913-x
    Barringtonia racemosa leaf water extract (BLE) had been shown to have high gallic acid (GA) content and BLE has been postulated to have anti-proliferative effects towards colorectal cancer. This study aims to further investigate the mechanism underlying the anti-proliferative effect of BLE in Caco-2 cells and to determine if GA is responsible for the observed effects. Both BLE and GA inhibited Caco-2 cells in a dose-dependent manner. Cells exposed to IC50 concentration of BLE and GA showed reduced antioxidant activities. GA-treated Caco-2 cells experienced higher oxidative stress compared to cells treated with BLE. Both BLE and GA significantly up-regulated the expression of SLC2A1. BLE but not GA, significantly down-regulated the expression of ADH4. Meanwhile, GA but not BLE, significantly up-regulated AKRIB10 and GLO1 but significantly down-regulated HAGH. Alterations in gene expression were coupled with changes in extracellular glucose and pyruvate levels. While BLE decreased intracellular pyruvate, GA did the opposite. Both intracellular and extracellular D-lactate were not affected by either BLE or GA. GA showed more pronounced effects on apoptosis while BLE irreversibly reduced cell percentage in the G0/G1 phase. In conclusion, this study demonstrates the multiple-actions of BLE against Caco-2 cells, potentially involving various polyphenolic compounds, including GA.
    Matched MeSH terms: Glucose Transporter Type 1/metabolism
  2. Ng ZX, Kuppusamy UR, Tajunisah I, Fong KC, Chua KH
    J Diabetes Complications, 2012 Sep-Oct;26(5):388-92.
    PMID: 22795339 DOI: 10.1016/j.jdiacomp.2012.05.014
    PURPOSE:
    In this study, we aimed to investigate the possible association between SLC2A1 26177A/G polymorphism and diabetic retinopathy (DR) in Malaysian patients with type 2 diabetes.

    METHODS:
    Genomic DNA was extracted from 211 Malaysian type 2 diabetic patients (100 without retinopathy [DNR], 111 with retinopathy) and 165 healthy controls. A high resolution melting assay developed in this study was used to detect SLC2A1 26177A/G polymorphism followed by statistical analysis.

    RESULTS:
    A statistically significant difference in 26177G minor allele frequency between healthy controls (19.7 %) and total patient group (26.1 %) (p<0.05, Odd ratio = 1.437, 95% Confidence interval = 1.015-2.035) as well as between healthy controls (19.7 %) and DNR patients (27.5%) (p<0.05, Odd ratio = 1.546, 95% Confidence interval = 1.024-2.336) was shown in this study. However, when compared between DR and DNR patients, there was no significant difference (p>0.05).

    CONCLUSIONS:
    This is the first study which shows that SLC2A1 26177G allele is associated with type 2 diabetes in Malaysian population but not with DR.
    Matched MeSH terms: Glucose Transporter Type 1/metabolism
  3. Bakar MH, Sarmidi MR, Kai CK, Huri HZ, Yaakob H
    Int J Mol Sci, 2014 Dec 02;15(12):22227-57.
    PMID: 25474091 DOI: 10.3390/ijms151222227
    A growing body of evidence suggests that activation of nuclear factor kappa B (NF-κB) signaling pathways is among the inflammatory mechanism involved in the development of insulin resistance and chronic low-grade inflammation in adipose tissues derived from obese animal and human subjects. Nevertheless, little is known about the roles of NF-κB pathways in regulating mitochondrial function of the adipose tissues. In the present study, we sought to investigate the direct effects of celastrol (potent NF-κB inhibitor) upon mitochondrial dysfunction-induced insulin resistance in 3T3-L1 adipocytes. Celastrol ameliorates mitochondrial dysfunction by altering mitochondrial fusion and fission in adipocytes. The levels of oxidative DNA damage, protein carbonylation and lipid peroxidation were down-regulated. Further, the morphology and quantification of intracellular lipid droplets revealed the decrease of intracellular lipid accumulation with reduced lipolysis. Moreover, massive production of the pro-inflammatory mediators tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) were markedly depleted. Insulin-stimulated glucose uptake activity was restored with the enhancement of insulin signaling pathways. This study signified that the treatments modulated towards knockdown of NF-κB transcription factor may counteract these metabolic insults exacerbated in our model of synergy between mitochondrial dysfunction and inflammation. These results demonstrate for the first time that NF-κB inhibition modulates mitochondrial dysfunction induced insulin resistance in 3T3-L1 adipocytes.
    Matched MeSH terms: Glucose Transporter Type 1/metabolism
  4. Tham YY, Choo QC, Muhammad TST, Chew CH
    Mol Biol Rep, 2020 Dec;47(12):9595-9607.
    PMID: 33259010 DOI: 10.1007/s11033-020-06019-9
    Mitochondrial dysfunction plays a crucial role in the central pathogenesis of insulin resistance and type 2 diabetes mellitus. Macrophages play important roles in the pathogenesis of insulin resistance. Lauric acid is a 12-carbon medium chain fatty acid (MCFA) found abundantly in coconut oil or palm kernel oil and it comes with multiple beneficial effects. This research objective was to uncover the effects of the lauric acid on glucose uptake, mitochondrial function and mitochondrial biogenesis in insulin-resistant macrophages. THP-1 monocytes were differentiated into macrophages and induce insulin resistance, before they were treated with increasing doses of lauric acid (5 μM, 10 μM, 20 μM, and 50 μM). Glucose uptake assay, cellular ROS and ATP production assays, mitochondrial content and membrane potential assay were carried out to analyse the effects of lauric acid on insulin resistance and mitochondrial biogenesis in the macrophages. Quantitative RT-PCR (qRT-PCR) and western blot analysis were also performed to determine the expression of the key regulators. Insulin-resistant macrophages showed lower glucose uptake, GLUT-1 and GLUT-3 expression, and increased hallmarks of mitochondrial dysfunction. Interestingly, lauric acid treatment upregulated glucose uptake, GLUT-1 and GLUT-3 expressions. The treatment also restored the mitochondrial biogenesis in the insulin-resistant macrophages by improving ATP production, oxygen consumption, mitochondrial content and potential, while it promoted the expression of mitochondrial biogenesis regulator genes such as TFAM, PGC-1α and PPAR-γ. We show here that lauric acid has the potential to improve insulin sensitivity and mitochondrial dysregulation in insulin-resistant macrophages.
    Matched MeSH terms: Glucose Transporter Type 1/metabolism
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links