Displaying all 4 publications

Abstract:
Sort:
  1. Boonyuen U, Jacob BAC, Wongwigkan J, Chamchoy K, Singha-Art N, Pengsuk N, et al.
    Malar J, 2024 Feb 02;23(1):38.
    PMID: 38308253 DOI: 10.1186/s12936-024-04864-8
    BACKGROUND: It was hypothesized that glucose-6-phosphate dehydrogenase (G6PD) deficiency confers a protective effect against malaria infection, however, safety concerns have been raised regarding haemolytic toxicity caused by radical cure with 8-aminoquinolines in G6PD-deficient individuals. Malaria elimination and control are also complicated by the high prevalence of G6PD deficiency in malaria-endemic areas. Hence, accurate identification of G6PD deficiency is required to identify those who are eligible for malaria treatment using 8-aminoquinolines.

    METHODS: The prevalence of G6PD deficiency among 408 Thai participants diagnosed with malaria by microscopy (71), and malaria-negative controls (337), was assessed using a phenotypic test based on water-soluble tetrazolium salts. High-resolution melting (HRM) curve analysis was developed from a previous study to enable the detection of 15 common missense, synonymous and intronic G6PD mutations in Asian populations. The identified mutations were subjected to biochemical and structural characterisation to understand the molecular mechanisms underlying enzyme deficiency.

    RESULTS: Based on phenotypic testing, the prevalence of G6PD deficiency (T) and intronic (c.1365-13T>C and c.486-34delT) mutations was detected with intermediate to normal enzyme activity. The double missense mutations were less catalytically active than their corresponding single missense mutations, resulting in severe enzyme deficiency. While the mutations had a minor effect on binding affinity, structural instability was a key contributor to the enzyme deficiency observed in G6PD-deficient individuals.

    CONCLUSIONS: With varying degrees of enzyme deficiency, G6PD genotyping can be used as a complement to phenotypic screening to identify those who are eligible for 8-aminoquinolines. The information gained from this study could be useful for management and treatment of malaria, as well as for the prevention of unanticipated reactions to certain medications and foods in the studied population.

    Matched MeSH terms: Glucosephosphate Dehydrogenase/analysis
  2. Eng LL, Lopez CG, Eapen JS, Eravelly J, Wiltshire BG, Lehmann H
    J Med Genet, 1972 Sep;9(3):340-3.
    PMID: 5079107 DOI: 10.1136/jmg.9.3.340
    Matched MeSH terms: Glucosephosphate Dehydrogenase/analysis
  3. Ji H, Om AD, Yoshimatsu T, Umino T, Nakagawa H, Sakamoto S
    Fish Physiol Biochem, 2010 Sep;36(3):749-755.
    PMID: 19685218 DOI: 10.1007/s10695-009-9349-z
    To assess the effect of dietary ascorbate on lipid metabolism, 1-year black sea bream (Acanthopagrus schlegelii) were reared on a casein-based purified diet and an ascorbate fortified diet (1,100 mg of L: -ascorbyl-2- monophosphate-Mg/kg diet). The fortified ascorbate was effectively incorporated into the fish body and elevated muscle carnitine content. Fortifications of dietary ascorbate depressed activities of glucose-6-phosphate dehydrogenase and NADP-isocitrate dehydrogenase as lipogenic enzymes in the hepatopancreas and intraperitoneal fat body. Starvation after feeding experiment activated carnitine palmitoyltransferase as a lipolysis enzyme in the hepatopancreas in both control and vitamin C(VC) groups, while the lipolysis activity was significantly higher in VC group. These results confirmed that dietary ascorbate depressed lipogenesis and activated lipolysis, i.e., influenced the lipid metabolism of black sea bream.
    Matched MeSH terms: Glucosephosphate Dehydrogenase/analysis
  4. Bon MC
    Electrophoresis, 1996 Jul;17(7):1248-52.
    PMID: 8855412
    A combination of a modified Feret' (Silvae Genet. 1971, 20, 46-50) extraction buffer and two types of electrophoresis with acrylamide and starch gels were used to characterize allozymes in mature vegetative tissue of a commercially high value species of rattans (Calamus subinermis). From the analysis of allelic segregation from single maternal rattans and their offspring, genetic control of the 16 observed banding zones, which were consistently scorable, was assumed. Seventeen gene loci were identified. The percentage of polymorphic loci within Calamus subinermis was much higher (70.5%) than expected levels of genetic diversity for tropical woody and non-woody species. It is thought that the protocol described may be applied to the analysis of the genetic diversity of all the endangered Calamus species.
    Matched MeSH terms: Glucosephosphate Dehydrogenase/analysis
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links