Genistein, daidzein, glycitein and quercetin are flavonoids present in soybean and other vegetables in high amounts. These flavonoids can be metabolically converted to more active forms, which may react with guanine in the DNA to form complexes and can lead to DNA depurination. We assumed two ultimate carcinogen forms of each of these flavonoids, diol epoxide form and diketone form. Density functional theory (DFT) and Hartree-Fock (HF) methods were used to study the reaction thermodynamics between active forms of flavonoids and DNA guanine. Solvent reaction field method of Tomasi and co-workers and the Langevin dipoles method of Florian and Warshel were used to calculate the hydration free energies. Activation free energy for each reaction was estimated using the linear free energy relation. Our calculations show that diol epoxide forms of flavonoids are more reactive than the corresponding diketone forms and are hence more likely flavonoid ultimate carcinogens. Genistein, daidzein and glycitein show comparable reactivity while quercetin is less reactive toward DNA.
An efficient electrochemical biosensor has been developed for the simultaneous evaluation of DNA bases using AgNPs-embedded covalent organic framework (COF). The COF (p-Phenylenediamine and terephthalaldehyde) was synthesized by reflux (DMF; 150 °C; 12 h) and the nanoparticles were embedded from the aqueous solutions of AgNO3 and NaBH4. The nanocomposite-modified COF was confirmed by spectral, microscopic, and electrochemical techniques. The nanocomposite material was deposited on a glassy carbon electrode (GCE) and the redox behavior of AgNPs was confirmed by cyclic voltammetry. The electrocatalytic activities of DNA bases were analyzed by differential pulse voltammetry (DPV) in a physiological environment (PBS; pH = 7.0) based on simple and easy-to-use electrocatalyst. The AgNPs-COF/GCE showed well-defined anodic peak currents for the bases guanine (+ 0.63 V vs. Ag/AgCl), adenine (+ 0.89 V vs. Ag/AgCl), thymine (+ 1.10 V vs. Ag/AgCl), and cytosine (+ 1.26 V vs. Ag/AgCl) in a mixture as well as individuals with respect to the conventional, COF, and AgNPs/GCEs. The AgNPs-COF/GCE showed linear concentration range of DNA bases from 0.2-1000 µM (guanine; (G)), 0.1-500 µM (adenine (A)), 0.25-250 µM (thymine (T)) and 0.15-500 µM (cytosine (C)) and LOD of 0.043, 0.056, 0.062, and 0.051 µM (S/N = 3), respectively. The developed sensor showed reasonable selectivity, reproducibility (RSD = 1.53 ± 0.04%-2.58 ± 0.02% (n = 3)), and stability (RSD = 1.22 ± 0.06%-2.15 ± 0.04%; n = 3) over 5 days of storage) for DNA bases. Finally, AgNPs-COF/GCE was used for the determination of DNA bases in human blood serum, urine and saliva samples with good recoveries (98.60-99.11%, 97.80-99.21%, and 98.69-99.74%, respectively).
A toxicity electrochemical DNA biosensor has been constructed for the detection of carcinogens using 24 base guanine DNA rich single stranded DNA, and methylene blue (MB) as the electroactive indicator. This amine terminated ssDNA was immobilized onto silica nanospheres and deposited on gold nanoparticle modified carbon-paste screen printed electrodes (SPEs). The modified SPE was initially exposed to a carcinogen, followed by immersion in methylene blue for an optimized duration. The biosensor response was measured using differential pulse voltammetry. The performance of the biosensor was identified on several anti-cancer compounds. The toxicity DNA biosensor demonstrated a linear response range to the cadmium chloride from 0.0005 ppm to 0.01 ppm (R2 = 0.928) with a limit of detection at 0.0004 ppm. The biosensor also exhibited its versatility to screen the carcinogenicity of potential anti-cancer compounds.