Displaying all 4 publications

Abstract:
Sort:
  1. Tursun M, Kumar CS, Bilge M, Rhyman L, Fun HK, Parlak C, et al.
    PMID: 25829021 DOI: 10.1016/j.saa.2015.03.022
    Molecular structure and properties of 2-fluoro-4-bromobenzaldehyde (FBB, C7H4BrFO) was experimentally investigated by X-ray diffraction technique and vibrational spectroscopy. Experimental results on the molecular structure of FBB were supported with computational studies using the density functional theory, with the Becke-3-Lee-Yang-Parr functional and the 6-311+G(3df,p) basis set. Molecular dimer formed by the intermolecular hydrogen bonding was investigated. Potential energy distribution analysis of normal modes was performed to identify characteristic frequencies. FBB crystallizes in orthorhombic space group P2(1)2(1)2(1) with the O-trans conformation. In order to investigate halogen effect, the chloro- (CBB) and bromo- (BBB) analogs of FBB have also been studied theoretically. It is observed that all compounds prefer the stable O-trans conformation. Although the free energy difference between the O-cis and O-trans conformers is less than 2.5 kcal/mol, the free energy rotational barrier is at least 7.4 kcal/mol. There is a good agreement between the experimentally determined structural parameters, and vibrational frequencies of FBB and those predicted theoretically.
    Matched MeSH terms: Hydrocarbons, Chlorinated/chemistry*
  2. Isa IM, Mustafar S, Ahmad M, Hashim N, Ghani SA
    Talanta, 2011 Dec 15;87:230-4.
    PMID: 22099672 DOI: 10.1016/j.talanta.2011.10.002
    A new cobalt(II) ion selective electrode based on palladium(II) dichloro acetylthiophene fenchone azine(I) has been developed. The best membrane composition is found to be 10:60:10:21.1 (I)/PVC/NaTPB/DOP (w/w). The electrode exhibits a Nerstian response in the range of 1.0 × 10(-1)-1.0 × 10(-6)M with a detection limit and slope of 8.0 × 10(-7)M and 29.6 ± 0.2 mV per decade respectively. The response time is within the range of 20-25s and can be used for a period of up to 4 months. The electrode developed reveals good selectivity for cobalt(II) and could be used in pH range of 3-7. The electrode has been successfully used in the determination of cobalt(II) in water samples.
    Matched MeSH terms: Hydrocarbons, Chlorinated/chemistry
  3. Adamu A, Abdul Wahab R, Aliyu F, Abdul Razak FI, Mienda BS, Shamsir MS, et al.
    J Mol Graph Model, 2019 11;92:131-139.
    PMID: 31352207 DOI: 10.1016/j.jmgm.2019.07.012
    Dehalogenases continue to garner interest of the scientific community due to their potential applications in bioremediation of halogen-contaminated environment and in synthesis of various industrially relevant products. Example of such enzymes is DehL, an L-2-haloacid dehalogenase (EC 3.8.1.2) from Rhizobium sp. RC1 that catalyses the specific cleavage of halide ion from L-2-halocarboxylic acids to produce the corresponding D-2-hydroxycarboxylic acids. Recently, the catalytic residues of DehL have been identified and its catalytic mechanism has been fully elucidated. However, the enantiospecificity determinants of the enzyme remain unclear. This information alongside a well-defined catalytic mechanism are required for rational engineering of DehL for substrate enantiospecificity. Therefore, using quantum mechanics/molecular mechanics and molecular mechanics Poisson-Boltzmann surface area calculations, the current study theoretically investigated the molecular basis of DehL enantiospecificity. The study found that R51L mutation cancelled out the dehalogenation activity of DehL towards it natural substrate, L-2-chloropropionate. The M48R mutation, however introduced a new activity towards D-2-chloropropionate, conveying the possibility of inverting the enantiospecificity of DehL from L-to d-enantiomer with a minimum of two simultaneous mutations. The findings presented here will play important role in the rational design of DehL dehalogenase for improving substrate utility.
    Matched MeSH terms: Hydrocarbons, Chlorinated/chemistry*
  4. Santhi VA, Hairin T, Mustafa AM
    Chemosphere, 2012 Mar;86(10):1066-71.
    PMID: 22197311 DOI: 10.1016/j.chemosphere.2011.11.063
    A study to assess the level of organochlorine pesticides (OCPs) and bisphenol A (BPA) in edible marine biota collected from coastal waters of Malaysia was conducted using GC-MS and SPE extraction. An analytical method was developed and validated to measure the level of 15 OCPs and BPA simultaneously from five selected marine species. It was observed that some samples had low levels of p,p'-DDE, p,p'-DDT and p,p'- DDD ranging from 0.50 ng g(-1) to 22.49 ng g(-1) dry weight (d.w) but significantly elevated level of endosulfan I was detected in a stingray sample at 2880 ng g(-1) d.w. BPA was detected in 31 out of 57 samples with concentration ranging from below quantification level (LOQ: 3 ng g(-1)) to 729 ng g(-1) d.w. The presence of OCPs is most likely from past use although there is also indication of illegal use in recent times. The study also reveals that BPA is more widely distributed in coastal species caught off the coast of the most developed state. The potential health risk from dietary intakes of OCPs and BPA from the analysed fish species was negligible.
    Matched MeSH terms: Hydrocarbons, Chlorinated/chemistry*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links