Displaying all 6 publications

Abstract:
Sort:
  1. Zuki AB, Hafeez YM, Loqman MY, Noordin MM, Norimah Y
    Anat Histol Embryol, 2007 Oct;36(5):349-56.
    PMID: 17845224
    This study investigates the effect of preservation methods on the performance of bovine parietal pericardium grafts in a rat model. Mid-ventral full thickness abdominal wall defects of 3 x 2.5 cm in size were created in 90 male Sprague-Dawley rats (300-400 g), which were divided into three groups of 30 rats each. The abdominal defects of group one and two were repaired with lyophilized and glycerolized bovine pericardium grafts, while the defects of group three were repaired with expanded polytetrafluoroethylene (ePTFE) Mycro Mesh as a positive control. Another group of 30 rats underwent sham operation and was used for comparison as negative control. Each group of rats (n = 30) was divided into five subgroups (n = 6) and killed at 1, 3, 6, 9 and 18 weeks post-surgery for gross and morphological evaluations. The rats tolerated the surgical procedure well with a total mortality of 0.05%. No serious post-operative clinical complications or signs of rejection were encountered. Adhesions between the grafts and the underlying visceral organs observed in the study were mostly results of post-surgical complications. Glycerol preservation delayed degradation and replacement of the grafts, whereas lyophilization caused early resorption and replacement of the grafts. The glycerolized grafts were replaced with thick dense fibrous tissue, and the lyophilized grafts were replaced with thin loose fibrous tissue. The healing characteristic of the bovine pericardium grafts was similar to those of the sham-operated group, and quite different from those of the ePTFE Mycro Mesh. The outcome of the present study confirmed the superiority of glycerolized bovine pericardium grafts over its lyophilized counter part.
    Matched MeSH terms: Implants, Experimental*
  2. Siar CH, Toh CG, Romanos G, Ng KH
    Clin Oral Implants Res, 2011 Jan;22(1):113-20.
    PMID: 20678135 DOI: 10.1111/j.1600-0501.2010.01970.x
    collagenous and noncollagenous membranes have been investigated in many animal systems but their effects in the macaque model are unknown.
    Matched MeSH terms: Implants, Experimental
  3. Pinnagoda K, Larsson HM, Vythilingam G, Vardar E, Engelhardt EM, Thambidorai RC, et al.
    Acta Biomater, 2016 10 01;43:208-217.
    PMID: 27450527 DOI: 10.1016/j.actbio.2016.07.033
    The treatment of congenital malformations or injuries of the urethra using existing autologous tissues can be associated with post-operative complications. Using rat-tail collagen, we have engineered an acellular high-density collagen tube. These tubes were made of 2 layers and they could sustain greater burst pressures than the monolayered tubes. Although it remains a weak material this 2 layered tube could be sutured to the native urethra. In 20 male New Zealand white rabbits, 2cm long grafts were sutured in place after subtotal excision of the urethra. This long-term study was performed in Lausanne (Switzerland) and in Kuala Lumpur (Malaysia). No catheter was placed post-operatively. All rabbits survived the surgical implantation. The animals were evaluated at 1, 3, 6, and 9months by contrast voiding cysto-urethrography, histological examination and immunohistochemistry. Spontaneous re-population of urothelial and smooth muscle cells on all grafts was demonstrated. Cellular organization increased with time, however, 20% of both fistula and stenosis could be observed post-operatively. This off-the shelf scaffold with a promising urethral regeneration has a potential for clinical application.

    STATEMENT OF SIGNIFICANCE: In this study we have tissue engineered a novel cell free tubular collagen based scaffold and used it as a urethral graft in a rabbit model. The novelty of our technique is that the tube can be sutured. Testing showed better burst pressures and the grafts could then be successfully implanted after a urethral excision. This long term study demonstrated excellent biocompatibility of the 2cm graft and gradual regeneration with time, challenging the current literature. Finally, the main impact is that we describe an off-the-shelf and cost-effective product with comparable surgical outcome to the cellular grafts.

    Matched MeSH terms: Implants, Experimental
  4. Mustafa A, Lung CY, Mustafa NS, Mustafa BA, Kashmoola MA, Zwahlen RA, et al.
    Clin Oral Implants Res, 2016 Mar;27(3):303-9.
    PMID: 25393376 DOI: 10.1111/clr.12525
    OBJECTIVES: To investigate the effect of eicosapentaenoic acid (EPA)-coated Ti implants on osteoconduction in white New Zealand rabbit mandibles.

    MATERIAL AND METHODS: Sandblasted and cleansed planar titanium specimens with a size of 5 × 5 × 1 mm were coated on one side with 0.25 vol% eicosapentaenoic acid (EPA). The other side of the specimens was kept highly polished (the control side). These specimens were inserted in rabbit mandibles. Twelve rabbits were randomly assigned into three study groups (n = 4). The rabbits were sacrificed at 4, 8, and 12 weeks. The harvested specimens with the implants were assessed for new bone formation on both sides of the implant using CBCT, conventional radiographs, and the biaxial pullout test. The results were statistically analyzed by a nonparametric Kruskal-Wallis test and Friedman's test as multiple comparisons and by Brunner-Langer nonparametric mixed model approach (R Software).

    RESULTS: A significant osteoconductive bone formation was found on the EPA-coated Ti implant surface (P < 0.05) at 8 weeks when compared to the polished surface (control). Biaxial pullout test results showed a significant difference (P < 0.05) after 8 and 12 weeks with a maximum force of 243.8 N, compared to 143.25 N after 4 week.

    CONCLUSION: EPA implant coating promoted osteoconduction on the Ti implant surfaces, enhancing the anchorage of the implant to the surrounding bone in white New Zealand rabbits.

    Matched MeSH terms: Implants, Experimental
  5. Siar CH, Toh CG, Ali TB, Seiz D, Ong ST
    Clin Oral Implants Res, 2012 Apr;23(4):438-46.
    PMID: 21435011 DOI: 10.1111/j.1600-0501.2010.02145.x
    A stable oral mucosa is crucial for long-term survival and biofunctionality of implants. Most of this evidence is derived from clinical and animal studies based solely on implant-supported prosthesis. Much less is known about the dimensions and relationships of this soft tissue complex investing tooth-implant-supported bridgework (TISB). The aim here was to obtain experimental evidence on the dimensional characteristics of oral mucosa around TISB with two different abutment designs.
    Matched MeSH terms: Implants, Experimental
  6. Kamarul T, Krishnamurithy G, Salih ND, Ibrahim NS, Raghavendran HR, Suhaeb AR, et al.
    ScientificWorldJournal, 2014;2014:905103.
    PMID: 25298970 DOI: 10.1155/2014/905103
    The in vivo biocompatibility and toxicity of PVA/NOCC scaffold were tested by comparing them with those of a biocompatible inert material HAM in a rat model. On Day 5, changes in the blood parameters of the PVA/NOCC-implanted rats were significantly higher than those of the control. The levels of potassium, creatinine, total protein, A/G, hemoglobulin, erythrocytes, WBC, and platelets were not significantly altered in the HAM-implanted rats, when compared with those in the control. On Day 10, an increase in potassium, urea, and GGT levels and a decrease in ALP, platelet, and eosinophil levels were noted in the PVA/NOCC-implanted rats, when compared with control. These changes were almost similar to those noted in the HAM-implanted rats, except for the unaltered potassium and increased neutrophil levels. On Day 15, the total protein, A/G, lymphocyte, monocyte, and eosinophil levels remained unaltered in the PVA/NOCC-implanted rats, whereas urea, A/G, WBC, lymphocyte, and monocyte levels remained unchanged in the HAM-implanted rats. Histology and immunohistochemistry analyses revealed inflammatory infiltration in the PVA/NOCC-implanted rats, but not in the HAM-implanted rats. Although a low toxic tissue response was observed in the PVA/NOCC-implanted rats, further studies are necessary to justify the use of this material in tissue engineering applications.
    Matched MeSH terms: Implants, Experimental
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links