Displaying all 11 publications

Abstract:
Sort:
  1. Al-qattan MN, Mordi MN
    J Mol Model, 2010 May;16(5):975-91.
    PMID: 19856192 DOI: 10.1007/s00894-009-0606-y
    In this study fragment-based drug design is combined with molecular docking simulation technique, to design databases of virtual sialic acid (SA) analogues with new substitutions at C2, C5 and C6 positions of SA scaffold. Using spaces occupied by C2, C5 and C6 natural moieties of SA when bound to hemagglutinin (HA) crystallographic structure, new fragments that are commercially available were docked independently in all the pockets. The oriented fragments were then connected to the SA scaffold with or without incorporation of linker molecules. The completed analogues were docked to the whole SA binding site to estimate their binding conformations and affinities, generating three databases of HA-bound SA analogues. Selected new analogues showed higher estimated affinities than the natural SA when tested against H3N2, H5N1 and H1N1 subtypes of influenza A. An improvement in the binding energies indicates that fragment-based drug design when combined with molecular docking simulation is capable to produce virtual analogues that can become lead compound candidates for anti-flu drug discovery program.
    Matched MeSH terms: Influenza A Virus, H5N1 Subtype/immunology
  2. Hasan NH, Ebrahimie E, Ignjatovic J, Tarigan S, Peaston A, Hemmatzadeh F
    PLoS One, 2016;11(6):e0156418.
    PMID: 27362795 DOI: 10.1371/journal.pone.0156418
    A common approach for developing diagnostic tests for influenza virus detection is the use of mouse or rabbit monoclonal and/or polyclonal antibodies against a target antigen of the virus. However, comparative mapping of the target antigen using antibodies from different animal sources has not been evaluated before. This is important because identification of antigenic determinants of the target antigen in different species plays a central role to ensure the efficiency of a diagnostic test, such as competitive ELISA or immunohistochemistry-based tests. Interest in the matrix 2 ectodomain (M2e) protein of avian influenza virus (AIV) as a candidate for a universal vaccine and also as a marker for detection of virus infection in vaccinated animals (DIVA) is the rationale for the selection of this protein for comparative mapping evaluation. This study aimed to map the epitopes of the M2e protein of avian influenza virus H5N1 using chicken, mouse and rabbit monoclonal or monospecific antibodies. Our findings revealed that rabbit antibodies (rAbs) recognized epitope 6EVETPTRN13 of the M2e, located at the N-terminal of the protein, while mouse (mAb) and chicken antibodies (cAbs) recognized epitope 10PTRNEWECK18, located at the centre region of the protein. The findings highlighted the difference between the M2e antigenic determinants recognized by different species that emphasized the importance of comparative mapping of antibody reactivity from different animals to the same antigen, especially in the case of multi-host infectious agents such as influenza. The findings are of importance for antigenic mapping, as well as diagnostic test and vaccine development.
    Matched MeSH terms: Influenza A Virus, H5N1 Subtype/immunology*
  3. Tan TS, Syed Hassan S, Yap WB
    Lett Appl Microbiol, 2017 Jun;64(6):446-451.
    PMID: 28370088 DOI: 10.1111/lam.12738
    The study aimed to construct a recombinant Lactobacillus casei expressing the nonstructural (NS) 1 protein of influenza A virus H5N1 on its cell wall. The NS1 gene was first amplified and fused to the pSGANC332 expression plasmid. The NS1 protein expression was carried out by Lact. casei strain C1. PCR screening and DNA sequencing confirmed the presence of recombinant pSG-NS1-ANC332 plasmid in Lact. casei. The plasmid was stably maintained (98·94 ± 1·65%) by the bacterium within the first 20 generations without selective pressure. The NS1 was expressed as a 49-kDa protein in association with the anchoring peptide. The yield was 1·325 ± 0·065 μg mg(-1) of bacterial cells. Lactobacillus casei expressing the NS1 on its cell wall was red-fluorescently stained, but the staining was not observed on Lact. casei carrying the empty pSGANC332. The results implied that Lact. casei strain C1 is a promising host for the expression of surface-bound NS1 protein using the pSGANC332 expression plasmid.

    SIGNIFICANCE AND IMPACT OF THE STUDY: The study has demonstrated, for the first time, the expression of nonstructural 1 (NS1) protein of influenza A virus H5N1 on the cell wall of Lactobacillus casei using the pSGANC332 expression plasmid. Display of NS1 protein on the bacterial cell wall was evident under an immunofluorescence microscopic observation. Lactobacillus casei carrying the NS1 protein could be developed into a universal oral influenza vaccine since the NS1 is highly conserved among influenza viruses.

    Matched MeSH terms: Influenza A Virus, H5N1 Subtype/immunology*
  4. Rasoli M, Omar AR, Aini I, Jalilian B, Syed Hassan SH, Mohamed M
    Acta Virol., 2010;54(1):33-9.
    PMID: 20201612
    A series of plasmids containing the HSP70 gene of Mycobacterium tuberculosis fused to the hemagglutinin (H5) gene of H5N1 avian influenza virus (AIV) (H5-HSP70 (heat shock protein 70) vaccine) or individual H5 gene (H5 vaccine) or HSP70 gene (HSP70 vaccine) were constructed based on the plasmid pcDNA3.1. Expression of H5 gene in Vero cells in vitro and in chickens in vivo was confirmed following their transfection and immunization with H5 or H5-HSP70 vaccines. Controls consisted of HSP70 vaccine, empty plasmid pcDNA3.1 and co-administered H5 and HSP70 vaccines. H5-HSP70 vaccine produced in chicken higher hemagglutination inhibition (HI) antibody titer than H5 vaccine. However, the increase was not statistically significant. We have demonstrated for the first time that the H5 DNA vaccine with fused HSP70 gene may produce an enhanced induction of humoral immune response to AIV in chickens.
    Matched MeSH terms: Influenza A Virus, H5N1 Subtype/immunology*
  5. Jazayeri SD, Ideris A, Zakaria Z, Omar AR
    J Biomed Biotechnol, 2012;2012:264986.
    PMID: 22701301 DOI: 10.1155/2012/264986
    Attenuated Salmonella has been used as a carrier for DNA vaccine. However, in vitro and in vivo studies on the bacteria following transfection of plasmid DNA were poorly studied. In this paper, eukaryotic expression plasmids encoding avian influenza virus (AIV) subtype H5N1 genes, pcDNA3.1/HA, NA, and NP, were transfected into an attenuated Salmonella enteric typhimurium SV4089. In vitro stability of the transfected plasmids into Salmonella were over 90% after 100 generations. The attenuated Salmonella were able to invade MCF-7 (1.2%) and MCF-10A (0.5%) human breast cancer cells. Newly hatched specific-pathogen-free (SPF) chicks were inoculated once by oral gavage with 10(9) colony-forming unit (CFU) of the attenuated Salmonella. No abnormal clinical signs or deaths were recorded after inoculation. Viable bacteria were detected 3 days after inoculation by plating from spleen, liver, and cecum. Fluorescent in situ hybridization (FISH) and polymerase chain reaction (PCR) were carried out for confirmation. Salmonella was not detected in blood cultures although serum antibody immune responses to Salmonella O antiserum group D1 factor 1, 9, and 12 antigens were observed in all the inoculated chickens after 7 days up to 35 days. Our results showed that live attenuated S. typhimurium SV4089 harboring pcDNA3.1/HA, NA, and NP may provide a unique alternative as a carrier for DNA oral vaccine in chickens.
    Matched MeSH terms: Influenza A Virus, H5N1 Subtype/immunology
  6. Yusuf M, Konc J, Sy Bing C, Trykowska Konc J, Ahmad Khairudin NB, Janezic D, et al.
    J Chem Inf Model, 2013 Sep 23;53(9):2423-36.
    PMID: 23980878 DOI: 10.1021/ci400421e
    ProBiS is a new method to identify the binding site of protein through local structural alignment against the nonredundant Protein Data Bank (PDB), which may result in unique findings compared to the energy-based, geometry-based, and sequence-based predictors. In this work, binding sites of Hemagglutinin (HA), which is an important target for drugs and vaccines in influenza treatment, have been revisited by ProBiS. For the first time, the identification of conserved binding sites by local structural alignment across all subtypes and strains of HA available in PDB is presented. ProBiS finds three distinctive conserved sites on HA's structure (named Site 1, Site 2, and Site 3). Compared to other predictors, ProBiS is the only one that accurately defines the receptor binding site (Site 1). Apart from that, Site 2, which is located slightly above the TBHQ binding site, is proposed as a potential novel conserved target for membrane fusion inhibitor. Lastly, Site 3, located around Helix A at the stem domain and recently targeted by cross-reactive antibodies, is predicted to be conserved in the latest H7N9 China 2013 strain as well. The further exploration of these three sites provides valuable insight in optimizing the influenza drug and vaccine development.
    Matched MeSH terms: Influenza A Virus, H5N1 Subtype/immunology
  7. Jazayeri SD, Ideris A, Zakaria Z, Shameli K, Moeini H, Omar AR
    J Control Release, 2012 Jul 10;161(1):116-23.
    PMID: 22549012 DOI: 10.1016/j.jconrel.2012.04.015
    DNA formulations provide the basis for safe and cost effective vaccine. Low efficiency is often observed in the delivery of DNA vaccines. In order to assess a new strategy for oral DNA vaccine formulation and delivery, plasmid encoding hemagglutinin (HA) gene of avian influenza virus, A/Ck/Malaysia/5858/04 (H5N1) (pcDNA3.1/H5) was formulated using green synthesis of sliver nanoparticles (AgNP) with polyethylene glycol (PEG). AgNP were successfully synthesized uniformly dispersed with size in the range of 4 to 18 nm with an average size of 11 nm. Cytotoxicity of the prepared AgNP was investigated in vitro and in vivo using MCF-7 cells and cytokine expression, respectively. At the concentration of -5 log₁₀AgNP, no cytotoxic effects were detected in MCF-7 cells with 9.5% cell death compared to the control. One-day-old specific pathogen-free (SPF) chicks immunized once by oral gavage with 10 μl of pcDNA3.1/H5 (200 ng/ml) nanoencapsulated with 40 μl AgNP (3.7×10⁻² μg of Ag) showed no clinical manifestations. PCR successfully detect the AgNP/H5 plasmid from the duodenum of the inoculated chicken as early as 1h post-immunization. Immunization of chickens with AgNP/H5 enhanced both pro inflammatory and Th1-like expressions, although no significant differences were recorded in the chickens inoculated with AgNP, AgNP/pcDNA3.1 and the control. In addition, serum samples collected from immunized chickens with AgNP/H5 showed rapidly increasing antibody against H5 on day 14 after immunization. The highest average antibody titres were detected on day 35 post-immunization at 51.2±7.5. AgNP/H5 also elicited both CD4+ and CD8+ T cells in the immunized chickens as early as day 14 after immunization, at 7.5±2.0 and 20±1.9 percentage, respectively. Hence, single oral administrations of AgNP/H5 led to induce both the antibody and cell-mediated immune responses as well as enhanced cytokine production.
    Matched MeSH terms: Influenza A Virus, H5N1 Subtype/immunology
  8. Oveissi S, Omar AR, Yusoff K, Jahanshiri F, Hassan SS
    Comp Immunol Microbiol Infect Dis, 2010 Dec;33(6):491-503.
    PMID: 19781778 DOI: 10.1016/j.cimid.2009.08.004
    The H5 gene of avian influenza virus (AIV) strain A/chicken/Malaysia/5744/2004(H5N1) was cloned into pcDNA3.1 vector, and Esat-6 gene of Mycobacterium tuberculosis was fused into downstream of the H5 gene as a genetic adjuvant for DNA vaccine candidates. The antibody level against AIV was measured using enzyme-linked immunosorbent assay (ELISA) and haemagglutination inhibition (HI) test. Sera obtained from specific-pathogen-free chickens immunized with pcDNA3.1/H5 and pcDNA3.1/H5/Esat-6 demonstrated antibody responses as early as 2 weeks after the first immunization. Furthermore, the overall HI antibody titer in chickens immunized with pcDNA3.1/H5/Esat-6 was higher compared to the chickens immunized with pcDNA3.1/H5 (p<0.05). The results suggested that Esat-6 gene of M. tuberculosis is a potential genetic adjuvant for the development of effective H5 DNA vaccine in chickens.
    Matched MeSH terms: Influenza A Virus, H5N1 Subtype/immunology*
  9. Pua TL, Chan XY, Loh HS, Omar AR, Yusibov V, Musiychuk K, et al.
    Hum Vaccin Immunother, 2017 Feb;13(2):306-313.
    PMID: 27929750 DOI: 10.1080/21645515.2017.1264783
    Highly pathogenic avian influenza (HPAI) H5N1 is an ongoing global health concern due to its severe sporadic outbreaks in Asia, Africa and Europe, which poses a potential pandemic threat. The development of safe and cost-effective vaccine candidates for HPAI is considered the best strategy for managing the disease and addressing the pandemic preparedness. The most potential vaccine candidate is the antigenic determinant of influenza A virus, hemagglutinin (HA). The present research was aimed at developing optimized expression in Nicotiana benthamiana and protein purification process for HA from the Malaysian isolate of H5N1 as a vaccine antigen for HPAI H5N1. Expression of HA from the Malaysian isolate of HPAI in N. benthamiana was confirmed, and more soluble protein was expressed as truncated HA, the HA1 domain over the entire ectodomain of HA. Two different purification processes were evaluated for efficiency in terms of purity and yield. Due to the reduced yield, protein degradation and length of the 3-column purification process, the 2-column method was chosen for target purification. Purified HA1 was found immunogenic in mice inducing H5 HA-specific IgG and a hemagglutination inhibition antibody. This paper offers an alternative production system of a vaccine candidate against a locally circulating HPAI, which has a regional significance.
    Matched MeSH terms: Influenza A Virus, H5N1 Subtype/immunology*
  10. Smith GJ, Fan XH, Wang J, Li KS, Qin K, Zhang JX, et al.
    Proc Natl Acad Sci U S A, 2006 Nov 07;103(45):16936-41.
    PMID: 17075062
    The development of highly pathogenic avian H5N1 influenza viruses in poultry in Eurasia accompanied with the increase in human infection in 2006 suggests that the virus has not been effectively contained and that the pandemic threat persists. Updated virological and epidemiological findings from our market surveillance in southern China demonstrate that H5N1 influenza viruses continued to be panzootic in different types of poultry. Genetic and antigenic analyses revealed the emergence and predominance of a previously uncharacterized H5N1 virus sublineage (Fujian-like) in poultry since late 2005. Viruses from this sublineage gradually replaced those multiple regional distinct sublineages and caused recent human infection in China. These viruses have already transmitted to Hong Kong, Laos, Malaysia, and Thailand, resulting in a new transmission and outbreak wave in Southeast Asia. Serological studies suggest that H5N1 seroconversion in market poultry is low and that vaccination may have facilitated the selection of the Fujian-like sublineage. The predominance of this virus over a large geographical region within a short period directly challenges current disease control measures.
    Matched MeSH terms: Influenza A Virus, H5N1 Subtype/immunology
  11. Jazayeri SD, Ideris A, Zakaria Z, Yeap SK, Omar AR
    Comp Immunol Microbiol Infect Dis, 2012 Sep;35(5):417-27.
    PMID: 22512819 DOI: 10.1016/j.cimid.2012.03.007
    This study evaluates the immune responses of single avian influenza virus (AIV) HA DNA vaccine immunization using attenuated Salmonella enterica sv. Typhimurium as an oral vaccine carrier and intramuscular (IM) DNA injection. One-day-old specific-pathogen-free (SPF) chicks immunized once by oral gavage with 10(9) Salmonella colony-forming units containing plasmid expression vector encoding the HA gene of A/Ck/Malaysia/5858/04 (H5N1) (pcDNA3.1.H5) did not show any clinical manifestations. Serum hemagglutination inhibition (HI) titer samples collected from the IM immunized chickens were low compared to those immunized with S. typhimurium.pcDNA3.1.H5. The highest average antibody titers were detected on day 35 post immunization for both IM and S. typhimurium.pcDNA3.1.H5 immunized groups, at 4.0±2.8 and 51.2±7.5, respectively. S. typhimurium.pcDNA3.1.H5 also elicited both CD4(+) and CD8(+) T cells from peripheral blood mononuclear cells (PBMCs) of immunized chickens as early as day 14 after immunization, at 20.5±2.0 and 22.9±1.9%, respectively. Meanwhile, the CD4(+) and CD8(+) T cells in chickens vaccinated intramuscularly were low at 5.9±0.9 and 8.5±1.3%, respectively. Immunization of chickens with S. typhimurium.pcDNA3.1.H5 enhanced IL-1β, IL-12β, IL-15 and IL-18 expressions in spleen although no significant differences were recorded in chickens vaccinated via IM and orally with S. typhimurium and S. typhimurium.pcDNA3.1. Hence, single oral administrations of the attenuated S. typhimurium containing pcDNA3.1.H5 showed antibody, T cell and Th1-like cytokine responses against AIV in chickens. Whether the T cell response induced by vaccination is virus-specific and whether vaccination protects against AIV infection requires further study.
    Matched MeSH terms: Influenza A Virus, H5N1 Subtype/immunology*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links