Displaying all 5 publications

Abstract:
Sort:
  1. Zhang W, Jiang B, Zeng M, Duan Y, Wu Z, Wu Y, et al.
    J Virol, 2020 04 16;94(9).
    PMID: 32075929 DOI: 10.1128/JVI.01850-19
    Duck Tembusu virus (DTMUV), which is similar to other mosquito-borne flaviviruses that replicate well in most mammalian cells, is an emerging pathogenic flavivirus that has caused epidemics in egg-laying and breeding waterfowl. Immune organ defects and neurological dysfunction are the main clinical symptoms of DTMUV infection. Preinfection with DTMUV makes the virus impervious to later interferon (IFN) treatment, revealing that DTMUV has evolved some strategies to defend against host IFN-dependent antiviral responses. Immune inhibition was further confirmed by screening for DTMUV-encoded proteins, which suggested that NS2A significantly inhibited IFN-β and IFN-stimulated response element (ISRE) promoter activity in a dose-dependent manner and facilitated reinfection with duck plague virus (DPV). DTMUV NS2A was able to inhibit duck retinoic acid-inducible gene-I (RIG-I)-, and melanoma differentiation-associated gene 5 (MDA5)-, mitochondrial-localized adaptor molecules (MAVS)-, stimulator of interferon genes (STING)-, and TANK-binding kinase 1 (TBK1)-induced IFN-β transcription, but not duck TBK1- and interferon regulatory factor 7 (IRF7)-mediated effective phases of IFN response. Furthermore, we found that NS2A competed with duTBK1 in binding to duck STING (duSTING), impaired duSTING-duSTING binding, and reduced duTBK1 phosphorylation, leading to the subsequent inhibition of IFN production. Importantly, we first identified that the W164A, Y167A, and S361A mutations in duSTING significantly impaired the NS2A-duSTING interaction, which is important for NS2A-induced IFN-β inhibition. Hence, our data demonstrated that DTMUV NS2A disrupts duSTING-dependent antiviral cellular defenses by binding with duSTING, which provides a novel mechanism by which DTMUV subverts host innate immune responses. The potential interaction sites between NS2A and duSTING may be the targets of future novel antiviral therapies and vaccine development.IMPORTANCE Flavivirus infections are transmitted through mosquitos or ticks and lead to significant morbidity and mortality worldwide with a spectrum of manifestations. Infection with an emerging flavivirus, DTMUV, manifests with clinical symptoms that include lesions of the immune organs and neurological dysfunction, leading to heavy egg drop and causing serious harm to the duck industry in China, Thailand, Malaysia, and other Southeast Asian countries. Mosquito cells, bird cells, and mammalian cell lines are all susceptible to DTMUV infection. An in vivo study revealed that BALB/c mice and Kunming mice were susceptible to DTMUV after intracerebral inoculation. Moreover, there are no reports about DTMUV-related human disease, but antibodies against DTMUV and viral RNA were detected in serum samples of duck industry workers. This information implies that DTMUV has expanded its host range and may pose a threat to mammalian health. However, the pathogenesis of DTMUV is largely unclear. Our results show that NS2A strongly blocks the STING-induced signal transduction cascade by binding with STING, which subsequently blocks STING-STING binding and TBK1 phosphorylation. More importantly, the W164, Y167, or S361 residues in duSTING were identified as important interaction sites between STING and NS2A that are vital for NS2A-induced IFN production and effective phases of IFN response. Uncovering the mechanism by which DTMUV NS2A inhibits IFN in the cells of its natural hosts, ducks, will help us understand the role of NS2A in DTMUV pathogenicity.
    Matched MeSH terms: Interferon-beta/metabolism*
  2. Zainal N, Chang CP, Cheng YL, Wu YW, Anderson R, Wan SW, et al.
    Sci Rep, 2017 02 20;7:42998.
    PMID: 28216632 DOI: 10.1038/srep42998
    Dengue is one of the most significant mosquito-borne virus diseases worldwide, particularly in tropical and subtropical regions. This study sought to examine the antiviral activity of resveratrol (RESV), a phytoalexin secreted naturally by plants, against dengue virus (DENV) infection. Our data showed that RESV inhibits the translocation of high mobility group box 1 (HMGB1), a DNA binding protein that normally resides in the nucleus, into the cytoplasm and extracellular milieu. HMGB1 migrates out of the nucleus during DENV infection. This migration is inhibited by RESV treatment and is mediated by induction of Sirt1 which leads to the retention of HMGB1 in the nucleus and consequently helps in the increased production of interferon-stimulated genes (ISGs). Nuclear HMGB1 was found to bind to the promoter region of the ISG and positively regulated the expression of ISG. The enhanced transcription of ISGs by nuclear HMGB1 thus contributes to the antiviral activity of RESV against DENV. To the best of our knowledge, this is the first report to demonstrate that RESV antagonizes DENV replication and that nuclear HMGB1 plays a role in regulating ISG production.
    Matched MeSH terms: Interferon-beta/metabolism
  3. Ch'ng WC, Stanbridge EJ, Yusoff K, Shafee N
    J Interferon Cytokine Res, 2013 Jul;33(7):346-54.
    PMID: 23506478 DOI: 10.1089/jir.2012.0095
    Viral-mediated oncolysis is a promising cancer therapeutic approach offering an increased efficacy with less toxicity than the current therapies. The complexity of solid tumor microenvironments includes regions of hypoxia. In these regions, the transcription factor, hypoxia inducible factor (HIF), is active and regulates expression of many genes that contribute to aggressive malignancy, radio-, and chemo-resistance. To investigate the oncolytic efficacy of a highly virulent (velogenic) Newcastle disease virus (NDV) in the presence or absence of HIF-2α, renal cell carcinoma (RCC) cell lines with defective or reconstituted wild-type (wt) von Hippel-Lindau (VHL) activity were used. We show that these RCC cells responded to NDV by producing only interferon (IFN)-β, but not IFN-α, and are associated with increased STAT1 phosphorylation. Restoration of wt VHL expression enhanced NDV-induced IFN-β production, leading to prolonged STAT1 phosphorylation and increased cell death. Hypoxia augmented NDV oncolytic activity regardless of the cells' HIF-2α levels. These results highlight the potential of oncolytic NDV as a potent therapeutic agent in the killing of hypoxic cancer cells.
    Matched MeSH terms: Interferon-beta/metabolism*
  4. Islam MA, Kundu S, Hassan R
    Curr Gene Ther, 2020;19(6):376-385.
    PMID: 32141417 DOI: 10.2174/1566523220666200306092556
    Multiple Sclerosis (MS) is the most common autoimmune demyelinating disease of the Central Nervous System (CNS). It is a multifactorial disease which develops in an immune-mediated way under the influences of both genetic and environmental factors. Demyelination is observed in the brain and spinal cord leading to neuro-axonal damage in patients with MS. Due to the infiltration of different immune cells such as T-cells, B-cells, monocytes and macrophages, focal lesions are observed in MS. Currently available medications treating MS are mainly based on two strategies; i) to ease specific symptoms or ii) to reduce disease progression. However, these medications tend to induce different adverse effects with limited therapeutic efficacy due to the protective function of the blood-brain barrier. Therefore, researchers have been working for the last four decades to discover better solutions by introducing gene therapy approaches in treating MS generally by following three strategies, i) prevention of specific symptoms, ii) halt or reverse disease progression and iii) heal CNS damage by promoting remyelination and axonal repair. In last two decades, there have been some remarkable successes of gene therapy approaches on the experimental mice model of MS - experimental autoimmune encephalomyelitis (EAE) which suggests that it is not far that the gene therapy approaches would start in human subjects ensuring the highest levels of safety and efficacy. In this review, we summarised the gene therapy approaches attempted in different animal models towards treating MS.
    Matched MeSH terms: Interferon-beta/metabolism
  5. Shawish HB, Wong WY, Wong YL, Loh SW, Looi CY, Hassandarvish P, et al.
    PLoS One, 2014;9(6):e100933.
    PMID: 24977407 DOI: 10.1371/journal.pone.0100933
    BACKGROUND: The biological properties of thiosemicarbazone have been widely reported. The incorporation of some transition metals such as Fe, Ni and Cu to thiosemicarbazone complexes is known to enhance its biological effects. In this study, we incorporated nickel(II) ions into thiosemicarbazone with N4-substitution groups H3L (H; H3L1, CH3; H3L2, C6H5; H3L3 and C2H5; H3L4) and examined its potential anti-inflammatory activity.

    METHODOLOGY/PRINCIPAL FINDINGS: Four ligands (1-4) and their respective nickel-containing complexes (5-8) were synthesized and characterized. The compounds synthesized were tested for their effects on NF-κB nuclear translocation, pro-inflammatory cytokines secretion and NF-κB transactivation activity. The active compound was further evaluated on its ability to suppress carrageenan-induced acute inflammation in vivo. A potential binding target of the active compound was also predicted by molecular docking analysis.

    CONCLUSIONS/SIGNIFICANCE: Among all synthesized compounds tested, we found that complex [Ni(H2L1)(PPh3)]Cl (5) (complex 5), potently inhibited IκBα degradation and NF-κB p65 nuclear translocation in LPS-stimulated RAW264.7 cells as well as TNFα-stimulated HeLa S3 cells. In addition, complex 5 significantly down-regulated LPS- or TNFα-induced transcription of NF-κB target genes, including genes that encode the pro-inflammatory cytokines TNFα, IFNβ and IL6. Luciferase reporter assays confirmed that complex 5 inhibited the transactivation activity of NF-κB. Furthermore, the anti-inflammatory effect of complex 5 was also supported by its suppressive effect on carrageenan-induced paw edema formation in wild type C57BL/6 mice. Interestingly, molecular docking study showed that complex 5 potentially interact with the active site of IKKβ. Taken together, we suggest complex 5 as a novel NF-κB inhibitor with potent anti-inflammatory effects.

    Matched MeSH terms: Interferon-beta/metabolism
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links