METHODS: Rat CIRI models were established via middle cerebral artery occlusion (MCAO). Primary nerve cells were isolated and cultured in fetal rat cerebral cortex in vitro, and oxygen-glucose deprivation/reperfusion (OGD/R) models of primary nerve cells were induced. After intervention with DN with different concentrations in MCAO rats and OGD/R nerve cells, 2,3,5-triphenyltetrazolium chloride staining was used to quantify cerebral infarction size in CIRI rats. Modified neurological severity score was utilized to assess neurological performance. Histopathologic staining and live/dead cell-viability staining was used to observe apoptosis. Levels of glutathione (GSH), superoxide dismutase (SOD), reactive oxygen species (ROS) and malondialdehyde (MDA) in tissues and cells were detected using commercial kits. DN level in serum and cerebrospinal fluid of MCAO rats were measured by liquid chromatography tandem mass spectrometry. In addition, expression levels of proteins like Kelch like ECH associated protein 1 (Keap1), nuclear factor erythroid 2-related factor 2 (Nfr2) and heme oxygenase 1 (HO-1) in the Nrf2/HO-1 pathway, and apoptosis-related proteins like Cleaved caspase-3, BCL-2-associated X protein (Bax) and B-cell lymphoma-2 (Bcl-2) were determined by Western blot and immunofluorescence.
RESULTS: DN can significantly enhance neurological function recovery by reducing cerebral infarction size and weakening neurocytes apoptosis in MCAO rats. It was further found that DN could improve oxidative stress (OS) injury of nerve cells by bringing down MDA and ROS levels and increasing SOD and GSH levels. Notably, DN exerts its pharmacological influences through entering blood-brain barrier. Mechanically, DN can reduce Keap1 expression while activate Nrf2 and HO-1 expression in neurocytes.
CONCLUSIONS: The protective effect of DN on neurocytes have been demonstrated in both in vitro and in vivo circumstances. It deserves to be developed as a potential neuroprotective agent through regulating the Nrf2/HO-1 signaling pathway to ameliorate neurocytes impairment caused by OS.
Methods: NQC was synthesised and characterised using spectroscopic techniques. The compound was tested for its anti-inflammatory effect using Lipopolysaccharide from Escherichia coli (LPSEc) induced inflammation in mouse macrophages (RAW 264.7 cells). The effect of NQC on inflammatory cytokines was measured using enzyme-linked immune sorbent assay (ELISA). The Nrf2 activity of the compound NQC was determined using 'Keap1:Nrf2 Inhibitor Screening Assay Kit'. To obtain the insights on NQC's activity on Nrf2, molecular docking studies were performed using Schrödinger suite. The metabolic stability of NQC was determined using mouse, rat and human microsomes.
Results: NQC was found to be non-toxic at the dose of 50 µM on RAW 264.7 cells. NQC showed potent anti-inflammatory effect in an in vitro model of LPSEc stimulated murine macrophages (RAW 264.7 cells) with an IC50 value 26.13 ± 1.17 µM. NQC dose-dependently down-regulated the pro-inflammatory cytokines [interleukin (IL)-1β (13.27 ± 2.37 μM), IL-6 (10.13 ± 0.58 μM) and tumor necrosis factor (TNF)-α] (14.41 ± 1.83 μM); and inflammatory mediator, prostaglandin E2 (PGE2) with IC50 values, 15.23 ± 0.91 µM. Molecular docking studies confirmed the favourable binding of NQC at Kelch domain of Keap-1. It disrupts the Nrf2 interaction with kelch domain of keap 1 and its IC50 value was 4.21 ± 0.89 µM. The metabolic stability studies of NQC in human, rat and mouse liver microsomes revealed that it is quite stable with half-life values; 63.30 ± 1.73, 52.23 ± 0.81, 24.55 ± 1.13 min; microsomal intrinsic clearance values; 1.14 ± 0.31, 1.39 ± 0.87 and 2.96 ± 0.34 µL/min/g liver; respectively. It is observed that rat has comparable metabolic profile with human, thus, rat could be used as an in vivo model for prediction of pharmacokinetics and metabolism profiles of NQC in human.
Conclusion: NQC is a new class of NRF2 activator with potent in vitro anti-inflammatory activity and good metabolic stability.