Affiliations 

  • 1 Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, 56000 Cheras, Kuala Lumpur, Malaysia
Oxid Med Cell Longev, 2023;2023:9291417.
PMID: 37077659 DOI: 10.1155/2023/9291417

Abstract

Certain dietary chemicals influenced the expression of chemopreventive genes through the Nrf2-Keap1 pathway. However, the difference in Nrf2 activation potency of these chemicals is not well studied. This study is aimed at determining the difference in the potency of liver Nrf2 nuclear translocation induced by the administration of equal doses of selected dietary chemicals in mice. Male ICR white mice were administered 50 mg/kg of sulforaphane, quercetin, curcumin, butylated hydroxyanisole, and indole-3-carbinol for 14 days. On day 15, the animals were sacrificed, and their livers were isolated. Liver nuclear extracts were prepared, and Nrf2 nuclear translocation was detected through Western blotting. To determine the implication of the Nrf2 nuclear translocation on the expression levels of several Nrf2-regulated genes, liver RNA was extracted for qPCR assay. Equal doses of sulforaphane, quercetin, curcumin, butylated hydroxyanisole, and indole-3-carbinol significantly induced the nuclear translocation of Nrf2 with different intensities and subsequently increased the expression of Nrf2-regulated genes with an almost similar pattern as the Nrf2 nuclear translocation intensities (sulforaphane > butylated hydroxyanisole = indole-3-carbinol > curcumin > quercetin). In conclusion, sulforaphane is the most potent dietary chemical that induces the Nrf2 translocation into the nuclear fraction in the mouse liver.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.