Displaying all 7 publications

Abstract:
Sort:
  1. Zhang H, Rios RS, Boursier J, Anty R, Chan WK, George J, et al.
    Chin Med J (Engl), 2023 Feb 05;136(3):341-350.
    PMID: 36848175 DOI: 10.1097/CM9.0000000000002603
    BACKGROUND: Liver biopsy for the diagnosis of non-alcoholic steatohepatitis (NASH) is limited by its inherent invasiveness and possible sampling errors. Some studies have shown that cytokeratin-18 (CK-18) concentrations may be useful in diagnosing NASH, but results across studies have been inconsistent. We aimed to identify the utility of CK-18 M30 concentrations as an alternative to liver biopsy for non-invasive identification of NASH.

    METHODS: Individual data were collected from 14 registry centers on patients with biopsy-proven non-alcoholic fatty liver disease (NAFLD), and in all patients, circulating CK-18 M30 levels were measured. Individuals with a NAFLD activity score (NAS) ≥5 with a score of ≥1 for each of steatosis, ballooning, and lobular inflammation were diagnosed as having definite NASH; individuals with a NAS ≤2 and no fibrosis were diagnosed as having non-alcoholic fatty liver (NAFL).

    RESULTS: A total of 2571 participants were screened, and 1008 (153 with NAFL and 855 with NASH) were finally enrolled. Median CK-18 M30 levels were higher in patients with NASH than in those with NAFL (mean difference 177 U/L; standardized mean difference [SMD]: 0.87 [0.69-1.04]). There was an interaction between CK-18 M30 levels and serum alanine aminotransferase, body mass index (BMI), and hypertension ( P  18 M30 levels were positively associated with histological NAS in most centers. The area under the receiver operating characteristics (AUROC) for NASH was 0.750 (95% confidence intervals: 0.714-0.787), and CK-18 M30 at Youden's index maximum was 275.7 U/L. Both sensitivity (55% [52%-59%]) and positive predictive value (59%) were not ideal.

    CONCLUSION: This large multicenter registry study shows that CK-18 M30 measurement in isolation is of limited value for non-invasively diagnosing NASH.

    Matched MeSH terms: Keratin-18
  2. Yunus MH, Siang KC, Hashim NI, Zhi NP, Zamani NF, Sabri PP, et al.
    Tissue Cell, 2014 Aug;46(4):233-40.
    PMID: 24973262 DOI: 10.1016/j.tice.2014.05.003
    The culture of human airway epithelial cells has played an important role in advancing our understanding of the metabolic and molecular mechanisms underlying normal function and disease pathology of airway epithelial cells. The present study focused on investigating the effects of human serum (HS) on the qualitative and quantitative properties of the human respiratory epithelium compared to the fetal bovine serum (FBS), as a supplement in culture. Respiratory epithelial (RE) cells derived from human nasal turbinate were co-cultured with fibroblasts, subsequently separated at 80-90% confluency by differential trypsinization. RE cells were then sub-cultured into 2 different plates containing 5% allogenic HS and FBS supplemented media respectively up to passage 1 (P1). Cell morphology, growth rate, cell viability and population doubling time were assessed under light microscope, and levels of gene expression were measured via real time reverse transcriptase-polymerase chain reaction (qRT-PCR). RE cells appeared as polygonal shape and expanded when cultured in HS whereas RE cells in FBS were observed to be easily matured thus limit the RE cells expansion. Proliferation rate of RE cells in HS supplemented media (7673.18 ± 1207.15) was 3 times higher compared to RE in FBS supplemented media (2357.68 ± 186.85). Furthermore, RE cells cultured in HS-supplemented media required fewer days (9.15 ± 1.10) to double in numbers compared to cells cultured in FBS-supplemented media (13.66 ± 0.81). Both the differences were significant (p<0.05). However, there were no significant differences in the viability of RE cells in both groups (p=0.105). qRT-PCR showed comparable expressions of gene Cytokeratin-14 (CK-14), Cytokeratin-18 (CK-18) and Mucin-5 subtype B (MUC5B) in RE cells cultured in both groups (p>0.05). In conclusion, HS is a comparatively better choice of media supplement in accelerating growth kinetics of RE cells in vitro thus producing a better quality of respiratory epithelium for future tracheal reconstruction.
    Matched MeSH terms: Keratin-18/biosynthesis
  3. Fatimah SS, Tan GC, Chua K, Tan AE, Nur Azurah AG, Hayati AR
    Burns, 2013 Aug;39(5):905-15.
    PMID: 23273814 DOI: 10.1016/j.burns.2012.10.019
    The aim of the present study was to determine the effects of KGF on the differentiation of cultured human amnion epithelial cells (HAECs) towards skin keratinocyte. HAECs at passage 1 were cultured in medium HAM's F12: Dulbecco's Modified Eagles Medium (1:1) supplemented with different concentrations of KGF (0, 5, 10, 20, 30 and 50 ng/ml KGF). Dose-response of KGF on HAECs was determined by morphological assessment; growth kinetic evaluation; immunocytochemical analysis; stemness and epithelial gene expression quantification with two step real time RT-PCR. KGF promotes the proliferation of HAECs with maximal effect observed at 10 ng/ml KGF. However, KGF decreased the stemness genes expression: Oct-3/4, Sox-2, Nanog3, Rex-1, FGF-4, FZD-9 and BST-1. KGF also down-regulates epithelial genes expression: CK3, CK18, CK19, Integrin-β1, p63 and involucrin in cultured HAECs. No significant difference on the gene expression was detected for each Nestin, ABCG-2, CK1 and CK14 in KGF-treated HAECs. Immunocytochemical analysis for both control and KGF-treated HAECs demonstrated positive staining against CK14 and CK18 but negative staining against involucrin. The results suggested that KGF stimulates an early differentiation of HAECs towards epidermal cells. Differentiation of KGF-treated HAECs to corneal lineage is unfavourable. Therefore, further studies are needed to elucidate the roles of KGF in the differentiation of HAECs towards skin keratinocytes.
    Matched MeSH terms: Keratin-18/metabolism
  4. Chuah KH, Wan Yusoff WNI, Sthaneshwar P, Nik Mustapha NR, Mahadeva S, Chan WK
    Liver Int, 2019 07;39(7):1315-1324.
    PMID: 30825254 DOI: 10.1111/liv.14084
    INTRODUCTION: MACK-3 (combination of hoMa, Ast and CK18) was reported to be a good biomarker for the diagnosis of fibrotic non-alcoholic steatohepatitis (NASH). However, there is no external validation to date.

    AIM: To evaluate the accuracy of MACK-3 for the diagnosis of fibrotic NASH.

    METHODOLOGY: Consecutive adult non-alcoholic fatty liver disease (NAFLD) patients who had liver biopsy in a university hospital were included. MACK-3 was calculated using the online calculator using the following variables: fasting glucose, fasting insulin, aspartate aminotransferase (AST) and cytokeratin 18 (CK18). MACK-3 cut-offs ≤0.134 and ≥0.550 were used to predict absence and presence of fibrotic NASH, respectively. Histopathological examination of liver biopsy specimen was reported according to the NASH Clinical Research Network Scoring System.

    RESULTS: Data for 196 subjects were analysed. MACK-3 was good for diagnosis of fibrotic NASH (area under receiver-operating characteristics curve [AUROC] 0.80), comparable to the Fibrosis-4 index (FIB4) and the NAFLD fibrosis score (NFS) and superior to the BARD score and CK18. MACK-3 was good for diagnosis of active NASH (AUROC 0.81) and was superior to other blood fibrosis tests. The overall accuracy, percentage of subjects in grey zone, sensitivity, specificity, positive predictive value and negative predictive value of MACK-3 for diagnosis of fibrotic NASH was 79.1%, 46.9%, 100%, 43.8%, 43.1% and 100%, respectively, while for diagnosis of active NASH was 90.0%, 39.3%, 84.2%, 81.4%, 88.9% and 74.5%, respectively.

    CONCLUSION: MACK-3 is promising as a non-invasive test for active NASH and fibrotic NASH and may be useful to identify patients who need more aggressive intervention.

    Matched MeSH terms: Keratin-18/blood*
  5. Noruddin NA, Saim AB, Chua KH, Idrus R
    Laryngoscope, 2007 Dec;117(12):2139-45.
    PMID: 17891046
    OBJECTIVE: To compare a co-culture system with a conventional dispase-dissociation method for obtaining functional human respiratory epithelial cells from the nasal turbinates for tissue engineering application.

    METHODS: Human respiratory epithelial cells were serially passaged using a co-culture system and a conventional dispase-dissociation technique. The growth kinetics and gene expression levels of the cultured respiratory epithelial cells were compared. Four genes were investigated, namely cytokeratin-18, a marker for ciliated and secretory epithelial cells; cytokeratin-14, a marker for basal epithelial cells; MKI67, a proliferation marker; and MUC5B, a marker for mucin secretion. Immunocytochemical analysis was performed using monoclonal antibodies against the high molecular-weight cytokeratin 34 beta E12, cytokeratin 18, and MUC5A to investigate the protein expression from cultured respiratory epithelial cells.

    RESULTS: Respiratory epithelial cells cultured using both methods maintained polygonal morphology throughout the passages. At passage 1, co-cultured respiratory epithelial showed a 2.6-times higher growth rate compared to conventional dispase dissociation technique, and 7.8 times higher at passage 2. Better basal gene expression was observed by co-cultured respiratory epithelial cells compared to dispase dissociated cells. Immunocytochemical analyses were positive for the respiratory epithelial cells cultured using both techniques.

    CONCLUSION: Co-culture system produced superior quality of cultured human respiratory epithelial cells from the nasal turbinates as compared to dispase dissociation technique.

    Matched MeSH terms: Keratin-18/biosynthesis; Keratin-18/genetics
  6. Chan WK, Sthaneshwar P, Nik Mustapha NR, Mahadeva S
    PLoS One, 2014;9(9):e105903.
    PMID: 25184298 DOI: 10.1371/journal.pone.0105903
    The utility of Cytokeratin-18 fragment, namely CK18Asp396 (M30), for the diagnosis of non-alcoholic steatohepatitis (NASH) is currently uncertain. We aimed to provide further data in this area among multi-ethnic Asian subjects with NAFLD.
    Matched MeSH terms: Keratin-18/blood*
  7. Gao F, Huang JF, Zheng KI, Pan XY, Ma HL, Liu WY, et al.
    J Gastroenterol Hepatol, 2020 Oct;35(10):1804-1812.
    PMID: 32246876 DOI: 10.1111/jgh.15055
    BACKGROUND AND AIM: There is an immediate need for non-invasive accurate tests for diagnosing liver fibrosis in patients with non-alcoholic steatohepatitis (NASH). Previously, it has been suggested that MACK-3 (a formula that combines homeostasis model assessment-insulin resistance with serum serum aspartate aminotransferase and cytokeratin [CK]18-M30 levels) accurately identifies patients with fibrotic NASH. Our aim was to assess the performance of MACK-3 and develop a novel, non-invasive algorithm for diagnosing fibrotic NASH.

    METHODS: Six hundred and thirty-six adults with biopsy-proven non-alcoholic fatty liver disease (NAFLD) from two independent Asian cohorts were enrolled in our study. Liver stiffness measurement (LSM) was assessed by vibration-controlled transient elastography (Fibroscan). Fibrotic NASH was defined as NASH with a NAFLD activity score (NAS) ≥ 4 and F ≥ 2 fibrosis.

    RESULTS: Metabolic syndrome (MetS), platelet count and MACK-3 were independent predictors of fibrotic NASH. On the basis of their regression coefficients, we developed a novel nomogram showing a good discriminatory ability (area under receiver operating characteristic curve [AUROC]: 0.79, 95% confidence interval [CI 0.75-0.83]) and a high negative predictive value (NPV: 94.7%) to rule out fibrotic NASH. In the validation set, this nomogram had a higher AUROC (0.81, 95%CI 0.74-0.87) than that of MACK-3 (AUROC: 0.75, 95%CI 0.68-0.82; P 

    Matched MeSH terms: Keratin-18/blood
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links