Anatomical descriptions of the lateral retinaculum have been published, but the attachments, name or even existence of its tissue bands and layers are ill-defined. We have examined 35 specimens of the knee. The deep fascia is the most superficial layer and the joint capsule is the deepest. The intermediate layer is the most substantial and consists of derivatives of the iliotibial band and the quadriceps aponeurosis. The longitudinal fibres of the iliotibial band merge with those of the quadriceps aponeurosis adjacent to the patella. These longitudinal fibres are reinforced by superficial arciform fibres and on the deep aspect by transverse fibres of the iliotibial band. The latter are dense and provide attachment of the iliotibial band to the patella and the tendon of vastus lateralis obliquus. Our study identifies two important new findings which are a constant connection of the deep fascia to the quadriceps tendon superior and lateral to the patella, and, a connection of the deeper transverse fibres to the tendon of vastus lateralis obliquus.
Quantitative assessment of knee articular cartilage (AC) morphology using magnetic resonance (MR) imaging requires an accurate segmentation and 3D reconstruction. However, automatic AC segmentation and 3D reconstruction from hydrogen-based MR images alone is challenging because of inhomogeneous intensities, shape irregularity, and low contrast existing in the cartilage region. Thus, the objective of this research was to provide an insight into morphologic assessment of AC using multilevel data processing of multinuclear ((23)Na and (1)H) MR knee images.
This study provides an experimental and finite element analysis of knee-joint structure during extended-knee landing based on the extracted impact force, and it numerically identifies the contact pressure, stress distribution and possibility of bone-to-bone contact when a subject lands from a safe height.