METHODS: Twenty-eight patients with severe TBI (GCS ≤ 8, three patients had initial GCS = 9-10, but rapidly deteriorated to ≤8) were recruited. CSF was collected from admission to day 5 post-injury. TRP, kynurenine (KYN), kynurenic acid (KYNA), QUIN, anthranilic acid (AA) and 3-hydroxyanthranilic acid (3HAA) were measured in CSF. The Glasgow Outcome Scale Extended (GOSE) score was assessed at 6 months post-TBI. Post-mortem brains were obtained from the Australian Neurotrauma Tissue and Fluid Bank and used in qPCR for quantitating expression of KP enzymes (indoleamine 2,3-dioxygenase-1 (IDO1), kynurenase (KYNase), kynurenine amino transferase-II (KAT-II), kynurenine 3-monooxygenase (KMO), 3-hydroxyanthranilic acid oxygenase (3HAO) and quinolinic acid phosphoribosyl transferase (QPRTase) and IDO1 immunohistochemistry.
RESULTS: In CSF, KYN, KYNA and QUIN were elevated whereas TRP, AA and 3HAA remained unchanged. The ratios of QUIN:KYN, QUIN:KYNA, KYNA:KYN and 3HAA:AA revealed that QUIN levels were significantly higher than KYN and KYNA, supporting increased neurotoxicity. Amplified IDO1 and KYNase mRNA expression was demonstrated on post-mortem brains, and enhanced IDO1 protein coincided with overt tissue damage. QUIN levels in CSF were significantly higher in patients with unfavourable outcome and inversely correlated with GOSE scores.
CONCLUSION: TBI induced a striking activation of the KP pathway with sustained increase of QUIN. The exceeding production of QUIN together with increased IDO1 activation and mRNA expression in brain-injured areas suggests that TBI selectively induces a robust stimulation of the neurotoxic branch of the KP pathway. QUIN's detrimental roles are supported by its association to adverse outcome potentially becoming an early prognostic factor post-TBI.
METHOD: In this cross-sectional study, HIV-infected participants receiving suppressive ART for a minimum of 12 months were recruited from the University Malaya Medical Centre (UMMC), Malaysia. Stored plasma was analyzed for CMV, VZV, HSV-1 and HSV-2 IgG antibody levels, immune activation markers (interleukin-6, interferon-γ, neopterin and sCD14), kynurenine and tryptophan concentrations. The influence of the number of HHV co-infection and K/T ratio on CD4 T-cell recovery was assessed using multivariate Poisson regression.
RESULTS: A total of 232 HIV-infected participants were recruited and all participants were seropositive for at least one HHV; 96.1% with CMV, 86.6% with VZV, 70.7% with HSV-1 and 53.9% with HSV-2. K/T ratio had a significant positive correlation with CMV (rho = 0.205, p = 0.002), VZV (rho = 0.173, p = 0.009) and a tendency with HSV-2 (rho = 0.120, p = 0.070), with CMV antibody titer demonstrating the strongest modulating effect on K/T ratio among the four HHVs assessed in SOM analysis. In multivariate analysis, higher K/T ratio (p = 0.03) and increasing number of HHV co-infections (p<0.001) were independently associated with poorer CD4 T-cell recovery following 12 months of ART initiation.
CONCLUSION: Multiple HHV co-infections are common among ART-treated HIV-infected participants in the developing country setting and associated with persistent immune activation and poorer CD4 T-cell recovery.